Charging technology and cost effectiveness

GPS, GSM, DSRC, What to choose?

Bernhard Oehry
Partner
Rapp Trans AG
Basel, Switzerland
Contents

- Which charging system is best?
- Which technology is optimal?
- How to arrive at a cost effective solution?
Recent heavy vehicle charging systems

since 1.1.01

since 1.1.04

since 1.1.05

Rapp Trans
Objectives

<table>
<thead>
<tr>
<th>Austria</th>
<th>Germany</th>
<th>Switzerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Finance extension and operation of motorway network</td>
<td>• Finance extension and operation of motorway network</td>
<td>• Charge the real costs, internalisation of external costs</td>
</tr>
<tr>
<td></td>
<td>• Charge the real costs, “the user pays” principle</td>
<td>• Finance new railway infrastructure</td>
</tr>
<tr>
<td></td>
<td>• Promote the efficient use of HGV</td>
<td>• Limit HGV traffic growth</td>
</tr>
</tbody>
</table>
Charging Principles

<table>
<thead>
<tr>
<th></th>
<th>Austria</th>
<th>Germany</th>
<th>Switzerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged network</td>
<td>Motorways & some expressways</td>
<td>Motorways</td>
<td>all roads</td>
</tr>
<tr>
<td>Charged vehicles</td>
<td>HV >3.5 tons</td>
<td>HGV >12 tons</td>
<td>HGV >3.5 tons</td>
</tr>
<tr>
<td>Charge parameters</td>
<td>• distance • axles</td>
<td>• distance • axles • emission class</td>
<td>• (all) distance • weight • emission class</td>
</tr>
<tr>
<td>Legal nature</td>
<td>Fee, subject to VAT</td>
<td>Tax, no VAT</td>
<td>Tax, no VAT</td>
</tr>
<tr>
<td>Charging technology</td>
<td>DSRC (mandatory OBU)</td>
<td>GPS/GSM or journey booking</td>
<td>Tacho/GPS/DSRC or manual recording</td>
</tr>
</tbody>
</table>
Costs and revenues

<table>
<thead>
<tr>
<th></th>
<th>Austria</th>
<th>Germany</th>
<th>Switzerland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment costs</td>
<td>€ 370m</td>
<td>n.a.</td>
<td>€ 200m</td>
</tr>
<tr>
<td>Operating costs</td>
<td>€ 35m/a</td>
<td>€ 620m/a</td>
<td>€ 35m/a</td>
</tr>
<tr>
<td>Personnel</td>
<td>ASFINAG 150 Ops. 120 Enf.</td>
<td>750 Toll Collect 540 BAG (Enf.)</td>
<td>120 Swiss Customs</td>
</tr>
<tr>
<td>Fee income</td>
<td>€ 770m/a</td>
<td>€ 3 000m/a</td>
<td>€ 800m/a</td>
</tr>
<tr>
<td>Costs in % of revenue (incl. capital costs)</td>
<td>10 - 12 %</td>
<td>20-22 % (excl. enforcement)</td>
<td>6-8 %</td>
</tr>
</tbody>
</table>
Which system is optimal?

Criteria to assess a system

- **Will it be accepted?**
 - by the public, by interest groups
 - most systems fail in the political process

- **Does it meet the policy requirements?**
 - a question of charging concept

- **Is it cost effective?**
 - a question of total lifetime costs
Optimal system: Will be accepted

Policy must answer to an acceptable need

- **Clear prime objective**
 - financing
 - charging of real costs
 - demand management

- **Transparent use of revenue**
 - Earmarking increases acceptance

- “No new taxes”
 - New and better fee replaces other fees
Choosing the right charging concept
(not the right technology)

• **Financing**
 ■ Vignette (time)
 ■ Toll (distance)

• **Charging of real costs**
 ■ Infrastructure tolls
 ■ Charging all distance

• **Demand management**
 ■ Access charges
 ■ Charging all distance
Optimal system: **Is cost effective**

Factors influencing cost effectiveness

Policy
- Tariff
- Network size

Charging concept
- Treatment of occasional users
- Enforcement concept
- Project delays
Influencing cost effectiveness: Tariff

High tariffs make for good cost effectiveness

Operational costs in % of revenue

<table>
<thead>
<tr>
<th>Country</th>
<th>6-8%</th>
<th>10-12%</th>
<th>20-22%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Charge for a 40t lorry

- Switzerland: CH 2005
- Austria: CH 2005
- Germany: CH 2005

Operational costs in % of revenue:

- Switzerland: 6-8%
- Austria: 10-12%
- Germany: 20-22%

Influencing cost effectiveness: Tariff

High tariffs make for good cost effectiveness
Influencing cost effectiveness:

Treatment of occasional users

• Vienna convention
 ■ Non-equipped users must be admitted to the network
 UN Convention on Road Traffic (8 Nov 1968), Art. 3 §3

• European law
 ■ Equal treatment of all users (equipped and non-equipped)
 ■ No barriers to trade

Occasional user scheme

... is decisive for charge sophistication
 ■ severely limits tariff flexibility

... is a cost driver
 ■ requires manual access points on a 24/7 basis
Influencing cost effectiveness: Enforcement concept

- Nobody throws a coin into the basket if there is no barrier
- Charging technologies usually automate the throwing, not the barrier

In order of decreasing efficiency:
- Tamper proof on-board equipment
- Automated fixed enforcement stations
- Mobile patrols stopping offenders
- Patrols making random spot-checks
Influencing cost effectiveness: Project delays

- Lost revenue with a delayed system start is orders of magnitude higher than the investment

- Reasons for delay
 - technical problems: rare
 - back office operations: often
 - procurement challenged at court: always

- De-risking by
 - proper system design (occ. users & enforcement)
 - clear and specific requirements

- Procurement must be open regarding technology, but VERY specific regarding functional requirements
Charging concepts in a nutshell

- **Access charges**
 - Charge for duration of stay in zone
 - Charge for crossing border of zone

- **Tolls for special infrastructure**
 - Tolls on bridges, passes, tunnels, ferries
 - Tolls on motorway networks

- **Tolls on complex networks**
 - Motorways plus high-level roads
 - Defined map or fully signed

- **Charges on all distance**
 - All distance in an area (country)
 - No defined map
Charging technologies in a nutshell

- **Automatic number plate reading**
 - Camera to identify vehicle and location
 - Not for payment

- **Short range communication**
 - DSRC to identify charging location
 - DSRC for charging transaction

- **Positioning + wide-area communication**
 - GPS to identify charging location
 - Wide-area comms for charging transaction

- **Tachograph**
 - For measuring chargeable distance
 - Not for payment
Technologies for Access Charges

- **Paper permit (sticker, vignette)**
 - Parking tickets, motorway vignettes, etc.
 - Occasional users
 - requires dense network of points of sales
 - Enforcement
 - spot checking
 - Risk of delays
 - user acceptance is critical since finance aspect is obvious

- **Automatic number plate reading, ANPR**
 - London congestion charge, project for Swiss Vignette
 - Occasional users
 - many access points: kiosks, internet, call centre, ...
 - Enforcement
 - automated fixed stations
 - Risk of delays
 - user acceptance is critical
Technologies for Access Charges (2)

• **Short range communications, DSRC**
 Italian cities (limited access zones), Stockholm
 - **Occasional users**
 requires occasional user scheme (e.g. ANPR-based)
 - **Enforcement**
 mix of fixed and mobile enforcement
 - **Risk of delays**
 user acceptance is critical

• **Positioning + wide-area communication, GPS/GSM**
 (no example)
 - **Occasional users**
 requires occasional user scheme (e.g. ANPR-based)
 - **Enforcement**
 costly
 - **Risk of delays**
 technically potentially little problems; enforcement?
Technologies for Tolls

• **Short range communications, DSRC**
 European motorway toll concessions
 ▪ Occasional users
 manual lane or mandatory OBU
 ▪ **Enforcement**
 problematic in free flow
 ▪ **Risk of delays**
 time critical road-side installation

• **Positioning + wide-area communication, GPS/GSM**
 German LKW-Maut
 ▪ Occasional users
 manual booking scheme
 ▪ **Enforcement**
 high proportion of mobile patrols
 ▪ **Risk of delays**
 complex but manageable
Costs of DSRC and GPS/GSM compared

- **DSRC** is strong with **large number of users** (passenger cars) or **small network** (bridge, small country)
- **GPS/GSM** is strong with **low number of users** (e.g. lorries > 12t) or **large network** (large national motorway network)
 - costs of occasional user scheme neglected
 - additional revenue through value added services neglected
Technologies for Complex Network

- Significant problems with detour traffic
- Theoretical countermeasure: charge on motorways plus selective parts of the lower level roads
- Network is defined by a map (as part of the law)
- Widely seen as a migration scenario for GPS/GSM systems

- **Positioning + wide-area communication, GPS/GSM** envisaged to counteract toll avoidance

 - **Occasional users**
 - inconceivable manual booking scheme

 - **Enforcement**
 - needs to cover a huge network

 - **Risk of delays**
 - incomprehensible to occasional users; barrier to trade
Technologies for All Distance

- The 2nd solution to the avoidance problem
- Ideal measure to charge for external costs
- Leads to a better use of the road network
- No defined network, no map! → Measure distance

- Positioning + wide-area communication, GPS/GSM was planned in Holland as a national scheme

Severity: Occasional users
- No solution. (Tachograph does not show same distance)

Enforcement
- with mandatory OBU is good enforcement possible

Risk of delays
- Complex system
Technologies for All Distance (2)

- **Tachograph + wide-area communication**
 Swiss LSVA

 - **Occasional users**
 Tachograph on all heavy vehicles. For passenger cars??

 - **Enforcement**
 concept of strong OBU

 - **Risk of delays**
 complex but manageable
Summary: System concepts meeting policy requirements

<table>
<thead>
<tr>
<th>Policy</th>
<th>Technologies</th>
<th>Occasional User Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Charges</td>
<td>Paper/ANPR</td>
<td>Paper/ANPR</td>
</tr>
<tr>
<td>Tolls</td>
<td>DSRC</td>
<td>Manual DSRC</td>
</tr>
<tr>
<td>Complex Network</td>
<td>DSRC</td>
<td></td>
</tr>
<tr>
<td>All Distance</td>
<td>GPS/GSM</td>
<td>Tachograph</td>
</tr>
<tr>
<td>km</td>
<td>GPS/GSM</td>
<td>Tachograph</td>
</tr>
</tbody>
</table>

Note: The Complex Network is marked as not meeting policy requirements.
Which system is optimal

A good system ...

1. ... gets accepted → good policy work
2. ... meets the policy → right charge concept
3. ... is cost effective → right system concept

All this has little to do with technology

Why then is technology always discussed first?
GPS, GSM, DSRC, ...
What to choose?

• No need to bother
 - technology is not a value in itself
 - industry will offer competitive solutions
 technology should be decided by the market

• Important to decide on
 - charging concept
 - treatment of occasional users
 - enforcement concept
 function should be decided before going to market

Problems are not solved by “throwing them over the fence”
There is no single concept that fits everybody