Overview of CMF Guidebook
A Guide for Developing Quality CMFs

TRB International Workshop on CMFs
January 23, 2011
Objective

- Provide overview of guidebook
- Identify various methods for developing CMFs
- Set stage for afternoon
 - Issues with various methods
Overview of Guidebook

Intent – provide direction to agencies interested in developing CMFs

Audience – transportation safety practitioners, consultants, and researchers
Overview of Guidebook

Prerequisites – experience and/or education in the theory and practice of:

- Road safety engineering
- Basic analytical procedures
- Statistical concepts
Overview of Guidebook

Content

- Background on CMFs
 - Definitions, purpose, application, general issues

- Study Designs
 - Overview, sample size considerations, and strengths and weaknesses

- Resources
 - Identify appropriate analysis method
 - Improving completeness/consistency in reporting
Methods

- Before-After
 - Comparison Group
 - Empirical Bayes
 - Full Bayes

- Cross-Sectional

- Case-Control

- Cohort

- Alternative Approaches
Before-After – Comparison Group

- Account for changes in crashes unrelated to the treatment
 - Time trends
 - Traffic volume changes

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Treatment Group</th>
<th>Comparison Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>(N_{\text{observed},TB})</td>
<td>(N_{\text{observed},CB})</td>
</tr>
<tr>
<td>After</td>
<td>(N_{\text{observed},TA})</td>
<td>(N_{\text{observed},CA})</td>
</tr>
</tbody>
</table>
Before-After – Empirical Bayes

- EB approach properly accounts for changes in crashes due to:
 - Regression-to-the-mean
 - Better accounts for traffic volume and time trends
Before-After – Full Bayes

- Not a type of evaluation study on its own
 - Modeling technique
 - Similar to generalized linear modeling procedure
 - Used to develop estimates of expected crashes
 - Can be used in before-after and development of cross-sectional models

- Before-After
 - Reference group is used similar to EB
 - Distribution is used instead of point estimate
 - Combined with observed crashes
 - Estimate expected crash frequency, variance, and variance of estimated CMF
Before-After – Full Bayes

- **Cross-sectional**
 - Applied similar to generalized linear regression to relate:
 - Geometric characteristics
 - Operational characteristics
 - Expected crash experience
 - More flexible modeling tool
 - Allows for complex model forms
 - Estimation of valid models with small sample size
 - Ability to consider spatial correlation
 - Opportunity to incorporate prior knowledge
Before-After – General Issues

- Observed change in crashes may be due to other factors
 - Traffic volume changes
 - Changes in reported crash experience
 - Regression-to-the-mean
 - Other improvements
Before-After – Comparison Group Issues

- Requires suitable comparison group
Before-After – Comparison Group Issues

- **Difficult to account for RTM**
 - Must match treatment and comparison sites based on crash occurrence

- **Difficult to confirm RTM is not an issue**
 - Crash frequency not considered in site selection
 - Blanket treatment
 - Truly random selection of sites for treatment
 - Safety evaluation is related to operational improvement
Before-After – Empirical Bayes Issues

- More complex than comparison group
- Identification of suitable reference group
 - Spillover
 - Treatment may affect the logical reference group
 - E.g., Red light camera programs
Before-After – Full Bayes Issues

- More complex than empirical Bayes method
 - Requires high level of statistical training
- Software developed for application of empirical Bayes method
 - Seems to be difficult for the full Bayes method
Cross-Sectional

- Compare with and without rather than before and after
- Useful for estimating CMFs where there are insufficient instances of actual treatments
 - Several instances of sites with and without, but few changed from before to after
 - E.g., Compare 4-ft shoulder to 6-ft shoulder
 - Few projects where the shoulder is widened from 4 to 6 feet
 - Many segments with 4-ft shoulders and many with 6-ft shoulders
Cross-Sectional

- **Question:**
 - What are the safety effects of signalization?

- **Scenario**
 - 100 two-way stop-controlled intersections
 - 100 signalized intersections
 - Rural, 4-legged with similar traffic volumes

\[
CMF = \frac{2.9}{3.4} = 0.85
\]

3.4 crashes/year
2.9 crashes/year
Cross-Sectional Issues

- Comparison is between two distinct groups
 - Difference in crashes can be due to other factors (both known and unknown)
- Difficult to properly account for unknown, or known but unmeasured, factors
- Control for known factors through multiple variable regression
 - Science of assembling CMFs from multiple variable models is not fully developed
 - Inappropriate functional form, omitted variable bias, or correlation of variables
Case-Control

- Select sites based on outcome status and then determine prior treatment status
- Assess whether exposure to treatment is disproportionately distributed
 - Estimate odds ratio
 - Indicates likelihood of actual benefit

<table>
<thead>
<tr>
<th>Treatment</th>
<th># of Cases</th>
<th># of Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>With</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Without</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

\[Odds \text{ Ratio (OR)} = \text{CMF} = \frac{A/B}{C/D} = \frac{AD}{BC} \]
Case-Control Issues

- Cannot be used to determine relative risk
 - Indicates likelihood of outcome given presence of specific feature

- Cannot demonstrate causality
 - No time sequence of events

- Does not recognize differences between locations with multiple crashes
Cohort

- Select sites based on treatment status and then determine outcome status over time
- Assess whether exposure (time until event) is disproportionate between cohorts
 - Estimate relative risk
 - Direct estimate of CMF

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Outcomes</th>
<th>Non-Outcomes</th>
<th>Total At-Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>With</td>
<td>A</td>
<td>B</td>
<td>A + B</td>
</tr>
<tr>
<td>Without</td>
<td>C</td>
<td>D</td>
<td>C + D</td>
</tr>
</tbody>
</table>

Relative Risk = CMF = \(\frac{A}{C \cdot (A + B)} \)
Cohort Issues

- Large samples are often required
 - Relatively expensive
- Site characteristics are subject to change
 - Particularly for lengthy study periods
- Does not recognize differences between locations with multiple crashes
Alternative Approaches

- **Meta-analysis**
 - Aggregate analysis of past research
 - Systematically combine knowledge on CMFs

- **Expert panels**
 - Critically evaluate findings of published and unpublished research
 - Derive CMFs through consensus

- **Surrogates**
 - Derive a CMF indirectly using data other than crash data
 - E.g., vehicle speeds, traffic conflicts, etc
Surrogate Example

<table>
<thead>
<tr>
<th>Mean Pre-Treatment Speed (mph)</th>
<th>Speed Reduction (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>0.70</td>
</tr>
<tr>
<td>50</td>
<td>0.73</td>
</tr>
<tr>
<td>55</td>
<td>0.76</td>
</tr>
<tr>
<td>60</td>
<td>0.78</td>
</tr>
</tbody>
</table>

NCHRP Report 617
Alternative Approaches Issues

- **Meta-analysis**
 - Ensure all studies used are of sufficient quality
 - Sensitivity and publication bias

- **Expert panels**
 - Informal (based on expert consensus)
 - Difficult to derive estimates of uncertainty

- **Surrogates**
 - Need to establish relationship between surrogate and crashes
Which Method is Preferred?

- Before-after
 - Comparison group
 - Empirical Bayes
 - Full Bayes
- Cross-sectional
- Case-control
- Cohort
- Alternative methods
- It depends!
Scenario 1

- Jurisdiction implemented a 1.5 second all-red phase at 16 traffic signals in CBD
 - Blanket treatment
 - All 4-legged intersections
 - No other signalized intersections in vicinity
 - Several 2-way stop-controlled intersections along same two routes
 - Reasonable to believe that treatment does not impact safety at stop-controlled intersections

- Before-after with comparison group
Scenario 2

- Jurisdiction converted 2-way stop-controlled intersections to roundabouts
 - Suspected that safety benefits in this jurisdiction may be less than those found elsewhere
 - No new roundabout conversions until further study
 - Data will be used only from this jurisdiction
 - Limited before-after data exist for 10 conversions
 - All converted sites have similar characteristics
 - Large pool of 2-way stop-controlled intersections that have not been converted
 - Conversion is likely to change traffic volumes

- Empirical Bayes Before-After
Scenario 3

- Need to estimate CMF for flattening horizontal curves on rural, 2-lane roads
 - Agency’s crash data system has been updated
 Only latest 5 years of crash data are available
 - Few curves have undergone reconstruction and many were completed > 5 years ago
 - Data for 350 curves on rural, 2-lane roads
 - Data available for curve radii as well as other geometric and traffic volume data

- Cross-sectional
Scenario 4

- Develop CMF for increasing paved shoulder width on 2-lane rural roads
 - Several miles with narrow or no paved shoulders
 - Several more miles with 3 – 4 foot shoulders
 - Do not intend to implement treatment unless it is cost-effective to address run-off-road crashes
 - High frequency of ROR crashes, but spread-out over the network
 - Several segments with no crashes over 3 years
 - Several segments have only 1 or 2 crashes
 - Geometric and traffic volume data are available to control for factors other than the treatment

- Case-Control
Scenario 5

- Consider previous scenario, but now focus on mountainous regions instead of all 2-lane, rural roads
 - Crashes more prevalent in mountainous regions
 - Most segments experience at least 1 crash/year
 - Fewer miles for analysis
 - Do not intend to implement treatment unless it is cost-effective to address run-off-road crashes
 - Geometric and traffic volume data are available to control for factors other than the treatment

- Cohort
Resources

- Annotated outline
 - Improve completeness/consistency in reporting

- User must determine quality of CMF
 - Need complete and consistent information

- Highway Safety Manual and CMF Clearinghouse assess quality of CMFs
 - Need complete and consistent information
Resources – Relative Quality of CMFs

<table>
<thead>
<tr>
<th>Relative Rating</th>
<th>Excellent</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Design</td>
<td>Statistically rigorous study design with reference group or randomized experiment and control</td>
<td>Simple before / after study</td>
</tr>
<tr>
<td>Sample Size</td>
<td>Large sample, multiple years, diversity of sites</td>
<td>Limited homogeneous sample</td>
</tr>
<tr>
<td>Standard Error</td>
<td>Small compared to CRF</td>
<td>Large SE and confidence interval includes zero</td>
</tr>
<tr>
<td>Potential Bias</td>
<td>Controls for all sources of known potential bias</td>
<td>No consideration of potential bias</td>
</tr>
<tr>
<td>Data Source</td>
<td>Diversity in States representing different geographies</td>
<td>Limited to one jurisdiction in one State</td>
</tr>
</tbody>
</table>
Resources – Outline

- **Objective**
 - Identify treatment of interest
 - Discuss reason for conducting study
 - Identify target crash types and severities

- **Background**
 - Describe treatment of interest

- **Literature Review**
 - Summary of recent and salient literature
Resources – Outline

- Methodology
 - Discuss method used to develop CMF
 - Reason for selecting method
 - Strengths and weaknesses
 - Identify potential sources of bias
 - How these biases are addressed
 - Those that cannot be addressed
Resources – Outline

- **Data**
 - Data source(s)
 - Years of data
 - Number of sites (and/or miles if applicable)
 - Summary statistics
 - Average crashes per year
 - Annual, average, min, and max traffic volume
 - Applicability of CMFs
Resources – Outline

- **Results**
 - Present CMF(s)
 - Standard error of CMF
 - Calculate confidence interval
 - Judge quality and significance of results
Contact

Frank Gross, VHB
fgross@vhb.com
- Who covers general issues?
 - John, Frank, or Bhagwant?

- Applying Multiple CMFs

- CMFs Derived From High Crash Locations

- Considerations Related to Before-After and Cross-Sectional Designs

- Factors Affecting the Quality of CMFs