Advanced 3-Dimensional Compact-City Development Strategies for the Seoul Metropolitan Area on Future

2010. 11.

Dr. Hyun gun SUNG
Ji won Kang
Center for Future City Studies
I Future Trend & Seoul, Korea

II Development and Application Analysis of Transport Technology in Future

III Concept and Characteristics of Advanced 3-D Compact City

IV Location Alternatives and Application of Advanced 3-D Compact City in Seoul

V Conclusion and Policy Strategies
Future Trend & Seoul, Korea

1. Seoul and Korea at Present
2. Future Trend on Seoul, Korea and the World
3. Future Trend Summary and Development Prospect
I. Future Trend & Seoul, Korea

1. Seoul Metropolitan Area (SMA) at Present

SMA Location

- **Seoul MA City**: 25 Districts (Gu)
- **Incheon MA City**: 8 Districts + 2 Counties (Gun)
- **Kyung-gi Province**: 27 Cities (Si) + 4 Counties

SMA’s Administrative Government Structure
1. Seoul and Korea at Present

Population and Economy

<table>
<thead>
<tr>
<th>MA</th>
<th>Population (Yr 2005)</th>
<th>% Pop. To Entire Korea</th>
<th>No. of Employees in 2008</th>
<th>No. Firms (Yr 2008)</th>
<th>% No. of Employees to Entire Korea</th>
<th>% GRDP to Entire Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seoul</td>
<td>9,820,171</td>
<td>20.77%</td>
<td>8,158,554</td>
<td>1,439,374</td>
<td>25.0%</td>
<td>23.6%</td>
</tr>
<tr>
<td>Incheon</td>
<td>2,531,280</td>
<td>5.35%</td>
<td>1,487,299</td>
<td>310,145</td>
<td>4.5%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Kyung-gi</td>
<td>10,415,399</td>
<td>22.03%</td>
<td>6,403,782</td>
<td>1,153,201</td>
<td>19.6%</td>
<td>20.3%</td>
</tr>
<tr>
<td>Total</td>
<td>22,766,850</td>
<td>48.15%</td>
<td>16,049,635</td>
<td>2,902,720</td>
<td>49.3%</td>
<td>48.6%</td>
</tr>
<tr>
<td>Entire Korea</td>
<td>47,278,951</td>
<td>100.0%</td>
<td>32,576,560</td>
<td>6,529,564</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Population (%)

- Seoul
- Incheon
- Kyung-gi
- Total

GRDP to Entire Korea (%)

- Others
- Incheon
- Kyung-gi
- Seoul
1. Seoul and Korea at Present

Population and Economy

Population Density

Legend:
- Rail
- Road

Population Density

- under 3,000 persons/km²
- 3,000~5,000
- 5,000~10,000
- 10,000~20,000
- over 20,000 persons/km²

Employment Density

Legend:
- Rail
- Road

Employment Density

- under 5,000 persons/km²
- 5,000~10,000
- 10,000~20,000
- 20,000~30,000
- over 30,000 persons/km²
I. Future Trend & Seoul, Korea

1. Seoul Metropolitan Area (SMA) at Present

Road-Oriented Suburbanization

- Road Network at Present
- Expressway (X-way) Investment

Suburbanization and its Direction

New Town Dev. Projects Without-City

- 1971
- 1981
- 1990
- 2000

Urbanized Area
I. Future Trend & Seoul, Korea

1. Seoul Metropolitan Area (SMA) at Present

Traffic Congestion and Costs

* Traffic Congestion Costs (Unit 100M Won) 1 Us $ = 1,110 Won
2. Future Trend in Seoul, Korea and the World

Economic Growth

GDP Estimates in Future (Korea) : Development Demand and Suburbanization ↑

- 4% Annual Increase of GDP on average
- 3% increase of world economy

- *source : 1980~2015 : IMF(International Monetary Fund Home Page)
- *source : 2020, 2030 : vision 2030 (Korea)-함께가는 희망한국-한세대 앞을 내다보는 미래전략보고서

I. Future Trend & Seoul, Korea

2. Future Trend in Seoul, Korea and the World

Urbanization, Suburbanization and Mega-city Region

- **Step 1. Urbanization**
- **Step 2. Metropolitanization**
- **Step 3. Mega-regionalization**

* Source: http://www.america2050.org/maps/
I. Future Trend & Seoul, Korea

2. Future Trend in Seoul, Korea and the World

Population Structure and Housing Demand in Korea

Population estimates in future

Estimated Households: Family Nuclearization

Super-Aging Society: Recentralization and Transit Demand
I. Future Trend & Seoul, Korea

2. Future Trend in Seoul, Korea and the World

Income Distribution and Travel Budget

Korea

- Wolfson index
 - 0.23 (1994)
 - 0.25 (1993)
 - 0.020 (1984)
 - 0.018 (1993)

- Esteban & Ray index

IMF Crisis

- 0.20 (1994)
- 0.20 (1998)
- 0.28 (2005)
- 0.021 (1999)
- 0.021 (2005)

Source: CEO Information (2006), SERI

World: Income Distribution → Polarization and Transit Demand ↑

I. Future Trend & Seoul, Korea

2. Future Trend in Seoul, Korea and the World

Car Ownership and Travel Demand

Car-Oriented Mega-city Region?

- No. of Cars registered
- Motorization trend in Asia

Source: Jamie Leather (2009), p.4
I. Future Trend & Seoul, Korea

2. Future Trend in Seoul, Korea and the World

Fuel Price and Vehicle Technology

<table>
<thead>
<tr>
<th>Trend of World Fossil Fuel Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel efficiency (Liter/100km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO² M. Tons per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Source: European Commission (2009) “EU Energy Trend to 2030, p.16

* Source: Shell (2010)
I. Future Trend & Seoul, Korea

2. Future Trend in Seoul, Korea and the World

Architecture and Civil Engineering Technology

Skyscraper in Korea

Skyscraper in the World

No. Floors & Energy consumption

*sources: CTBUH Journal (2009), left; Hammond & Jones (2008), right
Summary of Future Trend in Seoul

<table>
<thead>
<tr>
<th>Category</th>
<th>Future Trend in 2030</th>
<th>Space and Transport Prospect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy</td>
<td>- World Economy: Annual growth 3.53%</td>
<td>- Employment Demand ↑</td>
</tr>
<tr>
<td></td>
<td>- Domestic Economy: Annual growth 4%</td>
<td>- Development needs ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Travel Demand ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Transportation Infrastructure ↑</td>
</tr>
<tr>
<td>Urbanization</td>
<td>- 60% of the world's population living in cities</td>
<td>- Seoul (GDP ranking: 20→17)</td>
</tr>
<tr>
<td></td>
<td>- Growth of metropolitan areas</td>
<td>- Urban sprawl</td>
</tr>
<tr>
<td></td>
<td>- megalopolis</td>
<td>- Travel Demand (between regions) ↑</td>
</tr>
<tr>
<td>Population</td>
<td>- Metropolitan area ↑</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>- Seoul ↓</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>- post-aged society (24.3%)</td>
<td>- Suburbanization ↑</td>
</tr>
<tr>
<td></td>
<td>- Increasing 1~2 person households (51.8%)</td>
<td>- travel distance ↑</td>
</tr>
<tr>
<td>Commute</td>
<td>- No. of car ↑</td>
<td>- Housing demand (in urban area) ↑</td>
</tr>
<tr>
<td>Car</td>
<td></td>
<td>- Medium/small-sized housing demand ↑</td>
</tr>
<tr>
<td>Oil price</td>
<td>- Oil Price ↑</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td>- Fuel/Engine Technology ↑</td>
<td>- Travel costs ↓</td>
</tr>
<tr>
<td>Architecture</td>
<td>- High rise / Energy saving Technology ↑</td>
<td>- Personal Vehicles demand ↑</td>
</tr>
<tr>
<td>civil engineering</td>
<td>- Underground Space Technology ↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Underground Space Development needs ↑</td>
</tr>
</tbody>
</table>
I. Future Trend & Seoul, Korea

3. Future Trend Summary and Development Prospect

Prospect Scenarios and Climate Change

- Climate Change
- Counter-Measure
- Spatial Structure
- Trend
- Base

Advanced 3-D Compact City-Region

3-D Compact City-Region

Centralized Decentralization

Opportunity ↑

Recentration

Decentralization (Suburbanization)

Risk ↓

Skyscraper Underground

Income polarization
Strong dev. demand
High oil price

Aging society
Nuclear family

Population Growth

Engine & Fuel Efficiency

Strong dev. Demand Motorization

Population

Economy

Technology

Future Transport System + Modes

High oil price

Aging society

Nuclear family

Strong dev. Demand Motorization

Population Growth

Engine & Fuel Efficiency

Strong dev. Demand Motorization

Population Growth

Engine & Fuel Efficiency

Population

Economy

Technology
Development and Application Analysis of Transport Technology in Future

1. Future Prospects of Transport System and Modes
2. Application Analyses for Future
II. Development and Application Analysis of Transport Technology in Future

1. Future Prospects of Transport System and Modes

Long-Distance Transport System and Modes

<table>
<thead>
<tr>
<th>Automated Highway System, AH</th>
<th>MAGLEV, magnetic levitation</th>
<th>Transition Flying Car</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept</td>
<td>using existing roads, underground 9-25 Platoons. Manless driving</td>
<td>high speed magnetic levitation train. Maximum speed 6437km/h (now 581km/h)</td>
</tr>
<tr>
<td>Case</td>
<td>PATH Project(I-15 San Diego 1991)</td>
<td>MAGLEV(Tokyo-Osaka) trial run(2003)</td>
</tr>
<tr>
<td>Benefits</td>
<td>safety and mobility, capacity ↑. energy and time save. Efficiency of road space ↑. Just-In-Time</td>
<td>High speed / Large capacity. minimized vibration. . air Pollutant free</td>
</tr>
<tr>
<td>Dis-advantages</td>
<td>Traffic congestion (slip road). Uncertain environmental and land-use benefits. Possibility of major accidents. social equality ↓</td>
<td>high construction costs(US$34.6M per kilometer)and operating costs. noise</td>
</tr>
</tbody>
</table>
II. Development and Application Analysis of Transport Technology in Future

1. Future Prospects of Transport System and Modes

Sustainability and Speed: Maglev

* Source: Morichi(2008)

주) MAGLEV Test Line: Tokyo – Osaka
II. Development and Application Analysis of Transport Technology in Future

1. Future Prospects of Transport System and Modes

<table>
<thead>
<tr>
<th>Short-Distance Transport System and Modes</th>
<th>Automated Public Transit System, APTS</th>
<th>Bike Rapid Transit</th>
<th>Neighborhood Electronic Car</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept</td>
<td>1~6 person, point-to-point, on-demand operating</td>
<td>overpass/underpass</td>
<td>Battery Electric Vehicles</td>
</tr>
<tr>
<td></td>
<td>Minimize interval</td>
<td>Interchange</td>
<td>low-speed</td>
</tr>
<tr>
<td></td>
<td>Max. 40km/h 3200~4800persons/hour</td>
<td>Speed ↑ Impact of Climate ↓</td>
<td>for two people</td>
</tr>
<tr>
<td></td>
<td>Using electric and hydrogen</td>
<td></td>
<td>Low Pollutant short distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>under 40km/hr</td>
</tr>
<tr>
<td>case</td>
<td>Morgatown PRT, ULTra, CVS, PRT200 etc.</td>
<td>none</td>
<td>California, US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US Transglide 2000, Canada Velo-city, Germany Velovent etc.</td>
<td>Zero Emissions Vehicle(rebate $1,500)</td>
</tr>
<tr>
<td>Benefits</td>
<td>Total Automation System</td>
<td>long-distance drive</td>
<td>Low Pollutant short distance vehicle</td>
</tr>
<tr>
<td></td>
<td>Occupy less space</td>
<td>Transportation Safety ↑</td>
<td>minimize parking space</td>
</tr>
<tr>
<td></td>
<td>Traffic congestion ↓</td>
<td>energy saving /Pollutant free</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pollutant free</td>
<td>promotion of health</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door-to-Door/ minimize land use</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Not applicable in CBDs</td>
<td>energy consumption ↑ (high-tech systems)</td>
<td>Land consumption</td>
</tr>
<tr>
<td></td>
<td>initial investment ↑</td>
<td>Construction/ operating cost ↑</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential greenhouse effect</td>
<td></td>
</tr>
</tbody>
</table>
II. Development and Application Analysis of Transport Technology in Future

1. Future Prospects of Transport System and Modes

Logistics System

<table>
<thead>
<tr>
<th>CARGOCAP</th>
<th>Advanced Multi-modal Freight System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td></td>
</tr>
<tr>
<td>Concept</td>
<td>Underground Capsule(48”×32”) Logistics System using Electricity(500V) Intelligent Logistics System Better is high demand for small size of freight Just-in-Time pickup and Delivery</td>
</tr>
<tr>
<td>case</td>
<td>none (Applicable in Yr. 2015)</td>
</tr>
<tr>
<td>Benefits</td>
<td>Traffic congestion ↓ Environment &energy efficiency ↑ Transportation Safety ↑ Land-use efficiency ↑ Freight transport reliability ↑</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>none</td>
</tr>
</tbody>
</table>
II. Development and Application Analysis of Transport Technology in Future

2. Application Analyses for Future Transport

Evaluation Criteria

- **Criteria 1: Practicality and Competitiveness**
 - Technology development, Compatibility
 - Spatial hierarchy, Competitiveness
 - Substitutes vs. Complements
 - Innercity vs. Intercity vs. International

- **Criteria 2: Cost and time budget limits**
 - Compared to income levels,
 - Constant travel budget (8~12%)
 - Travel time invariability (per day) (time vs. distance)
 - time and space Convergence
II. Development and Application Analysis of Transport Technology in Future

2. Application Analyses for Future Transport

Evaluation Criteria 1: Application

- **Passenger Transport**
 - Inner City: short
 - Inter City: Medium
 - Inter National: Long

- **Freight Transport**
 - CAEGOCAP
 - Automated Multi Modal Freight System
 - Automated Highway System

- New system and modes are complementary, not competitive, goods
- But, the role of old transport system and modes is becoming shrinking
II. Development and Application Analysis of Transport Technology in Future

2. Application Analyses for Future Transport

Evaluation Criteria

- Criteria 3: Sustainability
 - Economic Efficiency
 (time, construction costs, operating costs)
 - Social Equity
 (quality of life, the mobility Handicapped)
 - Environmental Preservation
 (Pollution, Land consumption)
II. Development and Application Analysis of Transport Technology in Future

2. Application Analyses for Future Transport

Evaluation Criteria 2

- Bike Rapid Transit
- High-Speed Electronic Train
- Super-High Speed Megalev
- Personal Rapid Transit (PRT)
- Automated Highway System (AHS)
- High-Speed Electronic Vehicles (EVs)
- Transiton Flying Car

Travel Distance (Efficiency)
III

Concept and Characteristics of Advanced 3-Dimensional Compact City

1. The Concept and Vision of Advanced 3-D Compact City
2. Advanced 3-D Compact City Development Panning
III. Concept and Characteristics of Advanced 3-D Compact City

1. The Concept and Vision of Advanced 3-D Compact City

Concept and Planning Elements of Advanced 3-D Compact City
III. Concept and Characteristics of Advanced 3-D Compact City

1. The Concept and Vision of Advanced 3-D Compact City

Need of Advanced 3-D Compact City

- Reduction of CO² emissions
- The Correlation between Land-use and Energy consumption

![Graph showing land use policy and energy consumption]

- Land Use Policy
 - Density
 - Urban
 - Outer
 - Inner
 - Land Use Mix
 - Population acceptance of density level
 - Infrastructure investments
 - Attractive public transportation

![Graph showing change in mode choice and trip efficiency]

- Change in Mode Choice
 - Walking/cycling
 - Public transportation
 - Private car

- Trip Efficiency
 - Trip Length
 - Trip Chaining

Energy Consumption

Unit: CO² tons per passenger or freight ton
III. Concept and Characteristics of Advanced 3-D Compact City

1. The Concept and Vision of Advanced 3-D Compact City

Concept and Vision of Advanced 3-D Compact City

All-win (Economy, Society, Environment)
- Public Transportation
- Low speed transit on the ground
- Transportation Demand Management

Convenient and safe city
- Preservation of ground built environment in past and present
- Traffic Calming + Sufficient open space on ground
- Underground use for new transport and transfer system

Enhancement of land use and conservation of land resources
- Global and domestic economic growth
- Transport Hub
- Hierarchy network
- Multi-Dimensional Complex Developments Urban Growth Management

Compact and 24 hours activity
- High-density, high-rise, compact development
- Underground Arterial traffic system
- Automatic Logistics System

Improvement of Accessibility
- Multi-mode transit system
- Diversity
- Smart work center based on Information and Communication Facilities

Accessibility
- Multi-mode
- Dimensional dualistic transport system (Arterial & Feeder)

Sustainability
- Enhancement of land use and conservation of land resources
- Global and domestic economic growth
- Transport Hub
- Hierarchy network
- Multi-Dimensional Complex Developments Urban Growth Management

Activity
- Compact and 24 hours activity
- High-density, high-rise, compact development
- Underground Arterial traffic system
- Automatic Logistics System

Transportation Mode
- Multi-mode
- Dimensional dualistic transport system (Arterial & Feeder)

Space
- Enhancement of land use and conservation of land resources
- Global and domestic economic growth
- Transport Hub
- Hierarchy network
- Multi-Dimensional Complex Developments Urban Growth Management

Time
- Convenient and safe city
- Preservation of ground built environment in past and present
- Traffic Calming + Sufficient open space on ground
- Underground use for new transport and transfer system

Advanced 3-D Compact City
- Compact and 24 hours activity
- High-density, high-rise, compact development
- Underground Arterial traffic system
- Automatic Logistics System

THE KOREA TRANSPORT INSTITUTE
III. Concept and Characteristics of Advanced 3-D Compact City

2. Advanced 3-D Compact City Development Planning

Transport Planning
- UAHS: Underground AHS
- UMRT: Underground Metro Rapid Transit
- BRT: Bus Rapid Transit
- HS-EV: High Speed-Electronic Vehicle
- PRT: Personal Rapid Transit
- NEV: Neighborhood Electric Vehicle

Logistics System
III. Concept and Characteristics of Advanced 3-D Compact City

2. Advanced 3-D Compact City Development Planning

Land-Use Planning

Vertical Land Use

- Medium-Low density land use
 - Housing, Neighborhood Facilities
 - Floor area ratio: 100~250%

- Medium-High density land use
 - Housing, Education
 - Floor area ratio: 250~400%

- High density mixed housing
 - Housing, Office, Commercial
 - Floor area ratio: 500~600%
 - 500m radius

- High density mixed land use
 - High density housing, Office, Commercial, Transportation Hub
 - Floor area ratio: over 600%
 - 250m radius

* Source: Towards an Urban Renaissance, Urban Task Force, 1999, p62

Horizontal Land use Model _ Urban Center

- Medium-Low density land use
 - Housing, Neighborhood Facilities
 - Floor area ratio: 100~250%

- Medium-High density land use
 - Housing, Education
 - Floor area ratio: 250~400%

- High density mixed housing
 - Housing, Office, Commercial
 - Floor area ratio: 500~600%
 - 500m radius

- High density mixed land use
 - High density housing, Office, Commercial, Transportation Hub
 - Floor area ratio: over 600%
 - 250m radius

Horizontal Land use Model _ Edge city

- Medium-Low density land use
 - Housing, Neighborhood Facilities
 - Floor area ratio: 100~250%

- Medium-High density land use
 - Housing, Education, Neighborhood Facilities
 - Floor area ratio: 250~400%
 - 500m radius

- High density mixed housing
 - Housing, Office, Commercial
 - Transportation Hub
 - Floor area ratio: 500~600%
 - 250m radius

- High-tech industrial complex
 - Industrial complex, R&D, Freight facilities

* Source: Towards an Urban Renaissance, Urban Task Force, 1999, p62
III. Concept and Characteristics of Advanced 3-D Compact City

2. Advanced 3-D Compact City Development Planning

Urban Design Planning

Minimizing the block size → Walking accessibility ↑

* Source: http://neighbors.columbia.edu/pages/manplanning/proposed_plan/gallery.html

* Source: A Study on Appropriate Size of Pedestrians-friendly City Blocks, Su-Min Lee, 2006, p50,52
III. Concept and Characteristics of Advanced 3-D Compact City

2. Advanced 3-D Compact City Development Planning

Architecture Design Planning

- Improve pedestrian environment _ Piloti Structure

- Greening building and sky passageway

- Improve pedestrian environment _ Set-back: Pedestrian-way width ↑

IV Location Alternatives and Application of Advanced 3-Dimensional Compact City in Seoul

1. Location Alternatives in the Seoul Metropolitan
2. Advanced 3-D Compact City Development on the DeaGok Edge City
IV. Location Alternatives and Application of Advanced 3-D Compact City in Seoul

1. Location Alternatives in the Seoul Metropolitan Area

Transport SOC Investment Planning

Legend
- u-Smart Highway
- GTX
- IC
- JCT
- 지하주차장

0 3 6 12 Kilometers

Ongoing
IV. Location Alternatives and Application of Advanced 3-D Compact City in Seoul

1. Location Alternatives in the Seoul Metropolitan Area

<table>
<thead>
<tr>
<th>Classification</th>
<th>Radius 3km</th>
<th>Radius 1km</th>
<th>Radius 500m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>3,595 (36.65%)</td>
<td>406 (67.21%)</td>
<td>45 (80.35%)</td>
</tr>
<tr>
<td>Commercial</td>
<td>619 (6.31%)</td>
<td>23 (3.81%)</td>
<td>3 (5.365%)</td>
</tr>
<tr>
<td>Public Facilities</td>
<td>271 (2.76%)</td>
<td>12 (1.98%)</td>
<td>1 (1.78%)</td>
</tr>
<tr>
<td>Office</td>
<td>94 (2.76%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leisure</td>
<td>24 (0.24%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etc. (Religious Facilities, Factory..)</td>
<td>5,208 (53.08%)</td>
<td>163 (26.98%)</td>
<td>7 (12.5%)</td>
</tr>
<tr>
<td>total</td>
<td>9,811 (100%)</td>
<td>604 (100%)</td>
<td>56 (100%)</td>
</tr>
</tbody>
</table>

Image: Map of Seoul Metropolitan Area showing location alternatives and development areas.
IV. Location Alternatives and Application of Advanced 3-D Compact City in Seoul

2. Advanced 3-D Compact City Development on the DeaGok Edge City

Location and Transport System in Future

<table>
<thead>
<tr>
<th>Present</th>
<th>Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>Rail</td>
</tr>
<tr>
<td>• Subway line3</td>
<td>• GTX(2017),</td>
</tr>
<tr>
<td>• Gyeongui double-track line (step1)</td>
<td>• Sosa~Deagok line(2012)</td>
</tr>
<tr>
<td></td>
<td>• Gyeongui double-track line (step2,2012),</td>
</tr>
<tr>
<td></td>
<td>• Seoul교외선 double-track (구상)</td>
</tr>
<tr>
<td>Road</td>
<td>Road</td>
</tr>
<tr>
<td>• Seoul ring expressway</td>
<td>• 2nd Jayuro (2010)</td>
</tr>
<tr>
<td>• National highway39</td>
<td>• National highway 39 Alternative Road (2011)</td>
</tr>
<tr>
<td>• Jayuro</td>
<td>• 백신도로(일부 보상 중)</td>
</tr>
<tr>
<td>• Local Road no.74(ilsan~Susa다)</td>
<td>• Seoul~Munsan road(2014)</td>
</tr>
<tr>
<td>• Municipal road no.356</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion and Policy Strategies

1. Needs of Advanced 3-D Compact city Development
2. Policy Strategies for its Realization
V. Conclusion and Policy Strategies

1. Needs of Advanced 3-D Compact City Development

Not demand, needs of Advanced 3-D Compact City

- Needs 1: Encouraging opportunities and discouraging risks
 - Strong economy growth
 - Income polarization
 - Aging society + nuclear family
 - High oil price
 - Architecture & civil engineering technology development
 → Climate change countermeasure

- Needs 2: People, utilitarian & advanced technology-oriented approach strategies
 - 3-Dimensional Compact City
 - Underground: Transport + SOC Facilities
 - Ground: People- & Environment-friendly Open Space and Transport
 - Sky: Skyscraper + Walking passageway + Flying car
 - Advanced City
 - Underground automated highway system / Megalev transit system
 - High and low speed EVs, PRT, BRT, E-bike, etc.
 - Advanced congestion pricing system for UAHS
V. Conclusion and Policy Strategies

2. Policy Strategies for its Realization

- Strong Support from Governments & Continuous Economic Growth
 - Change of spatial structure in a region can attained from strong support of gov.
 - A big-money investment and long-term construction project

- A Model City Development in Reality (Ex. Daegok Rail Station Area)
 - Realizing the expected impacts and encouraging the support

- Comprehensive & Integrated Planning and Policies
 - 3-D development ← integrated planning is necessary
 - Safety and disaster prevention planning is prerequisite

- Institutional Support for It
 - A new and advanced development project is achievable through institutional improvement
 - Integrating many related laws makes it easily achieve for future sustainability
Advanced 3-Dimensional Compact-City Development Strategies for the Seoul Metropolitan Area on Future

Thank you