Disclaimer

This presentation solely reflects the opinion of the SHRP 2 contractor and does not necessarily represent the opinion of the National Academies, the National Research Council, or the sponsors of the research.
Measuring and Valuing Travel Time Reliability From the Traveler Perspective

23 January 2011

Karl Wunderlich

presented at
Travel Time Reliability-World View and Lessons Workshop
TRB Annual Meeting
Washington DC
Overview

• System Reliability = Aggregated Traveler Reliability Experiences

• Limitations of Facility-Centric Reliability Aggregation

• Can Traveler Reliability Be Observed? (and consequently be measured and valued?)

• Addressing the Challenge of Quantifying the Traveler Reliability Experience
 – USDOT Integrated Corridor Management Program (ICM)
 – USDOT HOWLATE Studies
 – SHRP2 L14 Experiments

• Conclusions
Measuring Travel Reliability: Facility vs. Traveler Perspectives

Assume Blue route is 50% reliable and Purple route is 50% reliable. Both routes have roughly the same average travel time.

What is the traveler on-time reliability experience between Pasadena and Long Beach?

 a. 50%
 b. 0%
 c. 100%

A traveler might use different paths and facilities... might depart at different times, forgo or abandon a trip.

No simple aggregation of individual facility reliability over time accurately replicates the traveler reliability experience.
USDOT Integrated Corridor Management (ICM) Program: Reliability in Complex Networks

DALLAS ICM CORRIDOR

SAN DIEGO CORRIDOR
ICM: Challenges in Measuring Reliability
Traffic Simulation Analyses (Phase 2)

- Complex, Multi-Modal networks
 - Transit facilities
 - HOV and/or priced managed lanes
 - Parking facilities
 - Parallel freeway and arterial routes

- Consistency in Reliability Measurement, Traffic Simulation
 - Standard calculation procedures established for all ICM sites
 - Travel time, delay, reliability, reliability-weighted system throughput
 - These calculation procedures based on individual trip records obtained from three different traffic simulation models
 - Reliability improvements account for roughly half of all ICM benefits (valuation of reductions in travel time variance)
 - Documents on ICM Knowledgebase
 (http://www.its.dot.gov/icms/knowledgebase.htm)
Measuring and Valuing Travel Time Reliability: HOWLATE

• Heuristic On-line Web-Linked Arrival Time Estimation
 – HOWLATE is a (relatively) low-cost evaluation method that can comprehensively assess and quantify trip-level reliability
 – Simple dynamic programming techniques employed to assess how well various user strategies

• Based on archived travel time data, underlying travel time error estimates, usually a year or more

• Estimates user benefit only
 – Can’t estimate future system reliability if system changes
 – Can’t estimate effect on non-users

• More than a dozen case studies (1999-2007), evaluating and valuing impacts of traveler information on travel reliability
"Re-Enacting" Commutes via Simulation

Travel Times

<table>
<thead>
<tr>
<th>Day</th>
<th>Outer Loop</th>
<th>Inner Loop</th>
<th>B/W Pkwy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56</td>
<td>61!</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>54</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>77!</td>
<td>63!</td>
<td>61!</td>
</tr>
</tbody>
</table>

511 Pre-Trip Pick

! Late Arrival

Optimal Choice

Start Laurel @ 4:00 PM

End Dale City @ 5:00 PM
Risk of Being Late vs. Travel Budget

- Experienced Commuter (Risk-Averse)
- Advisory User
- Personalized ATIS User
- Experienced Commuter (Risk-Taking)
- Unfamiliar Traveler (Risk-Averse)
- Unfamiliar Traveler (Risk-Taking)

Time Expended in Excess of Optimal Travel Budget

Percent Late Trips
SHRP2 L14: Value of Travel Reliability Information Experiments

- Collaborative effort with Texas Transportation Institute (TTI)
 - Co-PIs: Sue Chrysler and Beverly Kuhn

- Conduct experiments that address the types of information that provide reliability context to unfamiliar trips
 - Subjects are engaged in a game managing the commute to work in an unfamiliar location
 - Some subjects receive contextual information on overall system reliability expectations
 - Some subjects receive real-time travel time estimates on primary and alternative routes
 - Each subject rates stress and willingness to pay for information types throughout the game

- Experiments designed to yield data intended to value both contextual and real-time data for unfamiliar travelers
You choose between starting your commute at 7:45, 8:00, or 8:15 in the morning. You want to be on time, but you also don't want to waste money on the meters downtown. Also, your family back home can only call you at 7:45am, so your preference would be to head out at 8:00 am or later.

You subscribe to a traffic information service that you can check every morning at 7:30. The service gives you real-time travel time information.

Now, it's 7:30am Monday morning, your first day getting ready for work. You're looking at the message sign on the highway from your hotel window... let's begin day 1!
SHRP2 L14: Value of Travel Reliability Information Experiments

SHRP2 L14: Effectiveness of Different Approaches to Disseminating Traveler Information on Travel Time Reliability
Travel Time Reliability Should Be Valued With Respect to Travel Context and Traveler Choice

• Travel Context
 – Trip purpose
 – Target time of arrival and preferred destination
 – Trip motivation, decisions and outcomes
 – Note: there is inherent utility in travel but this is *rarely* measured

• What defines a successful trip outcome?
 – Safe, on-time arrival
 – Constrained by costs and expectations
 • Monetary
 • Non-monetary (hassle)

• Reliability-related productivity of the integrated transportation system = the number of successful trip outcomes the system delivers over time
Summary of Considerations: Measurement and Valuation of Travel Time Reliability

• In complex networks with extensive traveler choice, reliability is best calculated by the aggregation of trip experiences, not the aggregation of facility measures of reliability

• Travel time reliability measurement always makes assumptions about traveler behavior/information, explicitly or implicitly

• A number of techniques can be used to analyze reliability from the trip-level, or traveler perspective

• Current research continues to tie measurement and valuation closer to trip context and traveler decision