Infrastructure Challenges

Workshop

OECD / ITF Study on
Truck Transport Safety, Productivity and Sustainability

Transportation Research Board 89th Annual Meeting
Washington DC
10 January 2010

Bernard Jacob

Laboratoire Central des Ponts et Chaussées
France
Outline

- Effects on Pavements
 - Pavement issues
 - Effect of axle configuration
 - Methodology

- Effects on Bridges
 - Methodology
 - Extreme loads and load effects
 - Fatigue

- Other Impacts
 - Impacts on safety barriers, bridge piers and tunnels
 - Impacts on road perception and operations

- Conclusions and Recommendation
Pavement issues

- If pavements and trucks are developed together, transport is facilitated while reducing its cost.

- It requires to take into account many aspects:
 - Environment
 - Pavements (type, strength, …)
 - Climate
 - Availability of resources (aggregates, soils, …)
 - Truck configurations
 - Axle load
 - Group of axles (number, spacing)
 - Wheel and tyres
 - Load distribution
 - Suspensions and steerable axles
Example: influence of axles and tyres

Axle group load

Aggressiveness against a 40T HGV

- Tridem single tyres spacing 1m35
- Tridem dual tyres spacing 1m35
- Tridem dual tyres spacing 1m40
- Tridem dual tyres spacing 1m60
- 3 isolated dual tyres (spacing > 2m)

Bernard JACOB, LCPC, 2010/1/10
Method for evaluating truck aggressiveness

- Relative Vehicle Wear Factor: \[VWF_{rel}(\text{truck}_x) = \frac{VWF(\text{truck}_x)}{VWF(\text{truck}_{ref})} \]

- Reference truck

 \[\text{40 t / 16.5 m} \]

- Wear factor of a group of axles:
 \[WF_{\text{group of axles } i} = k_i \left(\frac{W_i}{W_{ref}} \right)^{\alpha_i} \]

 where:
 - \(k_i \) and \(\alpha_i \) are two parameters which depend, for each group of axles \(i \), on the type of pavement and the expected traffic volume;
 - \(W_i \) is the total weight carried by the group of axle \(i \);
 - \(W_{ref} \) is the total weight carried by the equivalent reference group of axles.

Bernard JACOB, LCPC, 2010/1/10
Bridge issues

- Bridges are key/critical elements of the road network
- Bridges must be: reliable, safe, durable, and not too costly
- Heterogeneous bridge stock (ages, design, state, etc.)
- Traffic loads evolve with time: truck configurations, weights and dimensions
- Comparison/assessment of different truck configurations against aggressiveness
- Extreme load effects
- Fatigue (repeated loading)

Bernard JACOB, LCPC, 2010/1/10
Traffic loads and load effects

- Modelling bridges as beams: simple supported, continuous (2-3 spans)
- Influence lines: transfer functions
- Bending moments + shear forces
- \(L = 10, 20, 50 \) and \(100 \) m
- Calculation done for 39 heavy vehicle configurations (OECD)
- Maximum load effect (1 truck)
- Fatigue: \((\text{Max-min})^\alpha\), \(\alpha = 3, 5 \)
- Comparison to a reference 40 t articulated truck

Bernard JACOB, LCPC, 2010/1/10
Heavy vehicle configurations

<table>
<thead>
<tr>
<th>N°</th>
<th>Label</th>
<th>Vehicle configuration</th>
<th>GvW (t)</th>
<th>Payload (t)</th>
<th>Length (m)</th>
<th>Nb axles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ref</td>
<td></td>
<td>40</td>
<td>26</td>
<td>16.5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>AU1-w</td>
<td></td>
<td>46.50</td>
<td>29.00</td>
<td>17.31</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>AU2-h</td>
<td></td>
<td>66.00</td>
<td>44.50</td>
<td>25.01</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>AU3-v</td>
<td></td>
<td>90.00</td>
<td>60.00</td>
<td>33.31</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>BE1-w</td>
<td></td>
<td>39.00</td>
<td>22.80</td>
<td>16.40</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>BE2-h</td>
<td></td>
<td>60.00</td>
<td>39.30</td>
<td>25.25</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>CA1-w</td>
<td></td>
<td>39.50</td>
<td>25.30</td>
<td>21.55</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>CA2-w</td>
<td></td>
<td>46.50</td>
<td>31.30</td>
<td>21.55</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>CA3-h</td>
<td></td>
<td>62.50</td>
<td>42.30</td>
<td>20.43</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>CA4-v</td>
<td></td>
<td>62.50</td>
<td>37.30</td>
<td>38.33</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>DK1-w</td>
<td></td>
<td>44.00</td>
<td>30.00</td>
<td>18.48</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>DK2-w</td>
<td></td>
<td>48.00</td>
<td>32.00</td>
<td>18.75</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>DK3-w</td>
<td></td>
<td>48.00</td>
<td>32.30</td>
<td>16.50</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>DK4-h</td>
<td></td>
<td>60.00</td>
<td>40.70</td>
<td>25.25</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>DK5-h</td>
<td></td>
<td>60.00</td>
<td>38.00</td>
<td>26.10</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>EU1-w</td>
<td></td>
<td>36.00</td>
<td>24.00</td>
<td>16.50</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>EU2-w</td>
<td></td>
<td>40.00</td>
<td>26.00</td>
<td>16.50</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>EU3-w</td>
<td></td>
<td>40.00</td>
<td>27.00</td>
<td>16.90</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>EU4-w</td>
<td></td>
<td>40.00</td>
<td>21.90</td>
<td>18.75</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N°</th>
<th>Label</th>
<th>Vehicle configuration</th>
<th>GvW (t)</th>
<th>Payload (t)</th>
<th>Length (m)</th>
<th>Nb axles</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>DE1-h</td>
<td></td>
<td>40.00</td>
<td>20.60</td>
<td>25.24</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>MX1-w</td>
<td></td>
<td>44.00</td>
<td>26.85</td>
<td>20.80</td>
<td>5</td>
</tr>
<tr>
<td>21</td>
<td>MX2-w</td>
<td></td>
<td>48.50</td>
<td>32.35</td>
<td>20.80</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>MX3-w</td>
<td></td>
<td>44.00</td>
<td>26.85</td>
<td>21.57</td>
<td>5</td>
</tr>
<tr>
<td>23</td>
<td>MX4-v</td>
<td></td>
<td>66.50</td>
<td>42.85</td>
<td>39.06</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>NL1-h</td>
<td></td>
<td>50.00</td>
<td>33.41</td>
<td>24.20</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>NL2-h</td>
<td></td>
<td>60.00</td>
<td>37.70</td>
<td>25.20</td>
<td>7</td>
</tr>
<tr>
<td>26</td>
<td>NL3-h</td>
<td></td>
<td>60.00</td>
<td>39.72</td>
<td>25.24</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>ZA1-w</td>
<td></td>
<td>43.50</td>
<td>28.14</td>
<td>15.31</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>ZA2-w</td>
<td></td>
<td>49.30</td>
<td>31.90</td>
<td>17.75</td>
<td>6</td>
</tr>
<tr>
<td>29</td>
<td>ZA3-h</td>
<td></td>
<td>68.00</td>
<td>33.80</td>
<td>21.97</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>ZA4-h</td>
<td></td>
<td>58.00</td>
<td>34.24</td>
<td>21.90</td>
<td>7</td>
</tr>
<tr>
<td>31</td>
<td>UK1-w</td>
<td></td>
<td>44.00</td>
<td>26.13</td>
<td>19.50</td>
<td>8</td>
</tr>
<tr>
<td>32</td>
<td>UK2-w</td>
<td></td>
<td>44.00</td>
<td>26.00</td>
<td>18.75</td>
<td>5</td>
</tr>
<tr>
<td>33</td>
<td>US1-w</td>
<td></td>
<td>36.35</td>
<td>21.15</td>
<td>19.77</td>
<td>5</td>
</tr>
<tr>
<td>34</td>
<td>US2-w</td>
<td></td>
<td>36.35</td>
<td>23.48</td>
<td>21.96</td>
<td>5</td>
</tr>
<tr>
<td>35</td>
<td>US3-w</td>
<td></td>
<td>41.90</td>
<td>26.70</td>
<td>19.77</td>
<td>8</td>
</tr>
<tr>
<td>36</td>
<td>US4-h</td>
<td></td>
<td>38.35</td>
<td>23.59</td>
<td>22.06</td>
<td>5</td>
</tr>
<tr>
<td>37</td>
<td>US5-h</td>
<td></td>
<td>44.10</td>
<td>26.90</td>
<td>25.12</td>
<td>5</td>
</tr>
<tr>
<td>38</td>
<td>US6-v</td>
<td></td>
<td>53.80</td>
<td>37.29</td>
<td>31.57</td>
<td>7</td>
</tr>
</tbody>
</table>
Aggressiveness (max load effect)

Coefficient of aggressiveness (truck n) : \(K_n = \frac{\text{Max}(S_n)}{\text{Max}(S_{\text{ref}})} \)

Ex.: 10 m simple supported beam, shear forces
Maximum load effects and US bridge formula

- US bridge formula limits the total mass carried by any series of consecutive axles in a truck or combination:
 \[W = 500\left(\frac{L \times N}{(N-1)} + 12N + 36\right) \] (W in lbs, L in ft)

- Ex: 5-axle articulated 16.5 m = 73730 lbs or 33.5 t max (40 t in EU), \(c_{\text{ref}} = 40/33.5 = 1.194 \)
 - US-1: \(c_n = 0.903 \), \(C_n = 0.756 \)
 - AUS-2: \(c_n = 1.232 \), \(C_n = 1.03 \)

- For any truck \(n \): \(c_n = W_n / W_{bf} \), \(C_n = c_n / c_{\text{ref}} \) load coefficient

- Comparison of \(K_n \) and \(C_n \)
Aggressiveness 1 – max mid-span moment

Coefficient mid span moment

Bernard JACOB, LCPC, 2010/1/10
Aggressiveness 2 – max moment on pier

Coefficient pier moment

Bernard JACOB, LCPC, 2010/1/10
Aggressiveness 3 – all lengths vs max effects

Coefficient max / Load effect

- Mid span moment
- Pier moment
- Shear force
- Mean
- Bridge Formula

Bernard JACOB, LCPC, 2010/1/10
Fatigue aggressiveness

- Miner’s law + S-N curve (resistance to fatigue)
- Assumptions (crude !):
 - one truck run → one stress cycle ΔS (for moment on pier x 2 !)
 - 40 t reference truck → (Max S – min S) ≡ ΔS* (fatigue limit)
 - coefficient of aggressiveness: $K'_n = (\Delta S/\Delta S^*)^\alpha$
- where $\alpha=3$ if $\Delta S>\Delta S^*$ and $\alpha=5$ if $\Delta S<\Delta S^*$
- Bridge formula: $C_n = (c_n/c_{ref})^\alpha$
 where $\alpha=3$ if $c_n>c_{ref}$ and
 $\alpha=5$ if $c_n<c_{ref}$

Bernard JACOB, LCPC, 2010/1/10
Aggressiveness 1 – fatigue mid-span moment

Bernard JACOB, LCPC, 2010/1/10
Aggressiveness 2 – fatigue moment on pier

Bernard JACOB, LCPC, 2010/1/10
Dynamic amplification, traffic load and stress monitoring

- DAF rarely exceeds 1.1 to 1.2
 - for heavy loaded vehicles
 - for more than one truck on a bridge
- 1.05 applies to extreme load cases

B-WIM:
- mature technology
- more bridge types
- more parameters
- part of bridge monitoring systems

Bridge (B-)WIM is an appropriate tool: stress + load +…
Impacts on safety barriers, piers and tunnels

- **Safety barriers**: designed for a given vehicle mass, speed and impact angle, e.g. EN 1317 H4b: 38 t, 65 km/h, 20°

- Design depends on: consequences of an accident, traffic volume, type of road, local conditions/geometry, etc.

- **Bridge pier**: design + protection, FE calculations

- Not all trucks contained, decisions to be taken for LHV's...

- **Tunnels**: main issue is fire, up-grade of the EU legislation since the Mt Blanc fire (1999)
 - dangerous goods to be monitored
 - permanent access and inter-distance control
 - maintenance + fire detection/suppression in trucks
 - fire resistant materials, fuel tank protection
 - driver education and training
Impacts on road perception and operation

- **Road perception:**
 - … and visibility affected, leads to “improper maneuvering”
 - length and distance underestimation ! Overtaking !
 - splash and spray in wet conditions, - night time signaling

- **Road traffic operation:**
 - to smooth the traffic flow and reduce congestion:
 - speed limit harmonization (between trucks)
 - overtaking limitations/bans
 - to locally allocate dedicated lanes to trucks
 - to improve safety and efficiency:
 - crossings and turns design, LHV’s prohibited in some area/sections
 - adapted speed limitation vs. the infrastructure (roundabout, curves…) and the vehicles (load, height of the gravity center, performances…)
 - extension of parking lots
 - IAP (Int. Access Program) to be developed
Conclusions and recommendation (1)

PAVEMENTS

- Axle loads and configurations are much more important than the gross vehicle mass
- Distributing the load evenly among all the axles substantially reduces the aggressiveness
- Method exists to evaluate these aspects respecting the characteristics of the studied network
Conclusions and recommendation (2)

BRIDGES

- Truck aggressiveness mainly depends on the axle loads and the UDL (kN/m)
 → do not increase axle load, increase truck length more than load
- The heaviest trucks govern some bridge effects (medium span, semi-local effects), multiple presence events and long spans, fatigue can be an issue
- The US federal bridge formula is applicable for short/medium span bridges, has been designed for 20 m / 73 200 lbs trucks. To be updated and extended.
- Dynamic effect is NOT a major issue, bridge load and stress monitoring can be very effective (e.g. with B-WIM) + IAP and truck routing
Conclusions and recommendation (3)

OTHERS

- Safety barriers and bridge piers to be re-assessed/reinforced (LHVs)
- Better hazard monitoring (truck/driver/infras) in tunnels…
- ITS to be developed for road operation, strategies to be developed for LHV

Thank you!