Disclaimer

This presentation has not been reviewed by SHRP 2 and reflects solely the opinion of the presenter. It does not necessarily reflect the opinion of the National Academies, its units, or any group or individual helping oversee the work of SHRP 2 contractors.
Reliability in Policy-Sensitive Transportation Models: Insights from SHRP 2

Peter Vovsha,
Parsons Brinckerhoff,
New York, NY
SHRP 2 Projects

- C04 “Improving Our Understanding How Highway Congestion and Pricing Affect Travel Demand”
Fundamental Challenge

- Random Utility Model (RUM):
 \[U = \alpha \times Time + \beta \times Cost + \ldots + \varepsilon \]

- Random Coefficients RUM:
 \[U = \alpha \times Time + \beta \times Cost + \ldots + \varepsilon \]

- Random travel time:
 - \[U = \alpha \times Time + \beta \times Cost + \ldots \]
 - \[U = \alpha \times Time + \beta \times Cost + \gamma \times \text{STD} + \ldots + \varepsilon \] (RUM)
 - \[U = f(Time) + \beta \times Cost + \ldots \] (Risk)
Four Methods

- (Indirect) Perceived highway time by congestion levels
- (1st direct) Time-distribution-based measures
- (2nd direct) Schedule delay cost
- (3rd direct) Temporal profiles for activity participation
Perceived Highway Time

- Perceived transit time long recognized and used in models
- Highway time is normally considered generic
- Highway time components:
 - Free-flow time
 - Extra time (delay) by congestion levels
- Differential coefficients:
 - Psychological perception
 - Proxy for reliability
Time Weight By Congestion Levels, Wardman et al, 2009

<table>
<thead>
<tr>
<th>Travel time conditions</th>
<th>UK</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Flow</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Busy</td>
<td>1.05</td>
<td>1.03</td>
</tr>
<tr>
<td>Light Congestion</td>
<td>1.11</td>
<td>1.06</td>
</tr>
<tr>
<td>Heavy Congestion</td>
<td>1.31</td>
<td>1.20</td>
</tr>
<tr>
<td>Stop Start</td>
<td>1.50</td>
<td>1.38</td>
</tr>
<tr>
<td>Gridlock</td>
<td>1.89</td>
<td>1.79</td>
</tr>
</tbody>
</table>
Other Evidence

- **SHRP 2 C04:**
 - Travel time is broken into free-flow and delay components
 - Delay time weight vs. free-flow time is 1.6-2.5 in mode and route type choice with higher values for toll routes

- **NCHRP 431:**
 - Recommended mark-up value of 2.5 to VOT savings under congested conditions
Time-Distribution-Based Measures

- **(Mean-Variance)** Standard Deviation (symmetric)
- **(Buffer time)** Difference between 80-90-95th and 50th percentile (asymmetric)
- **(Risk measure)** Probability of delay of certain length (asymmetric)
- **(Lateness measure)** Average delay (asymmetric)
Reliability Ratio (ρ)

$U = b \times \text{Time} + c \times \text{Cost} + d \times \text{STD}$

- VOT = b/c
- VOR = d/c
- $\rho = d/b = \text{VOR}/\text{VOT}$

Evidence from estimated models:
- Dutch Ministry of Transport, 2004: $\rho = 0.80$
- Hensher, 2007: $\rho = 0.30-0.40$
- Eliasson, 2004: $\rho = 0.30-0.95$
- NCHRP 431: $\rho = 0.80-1.10$
- SHRP 2 C04: $\rho = 0.40-0.90$
Schedule Delay Cost

Cost, $

Linear w/fixed

Linear

Non-linear

Early arrival, min
Preferred arrival time (PAT)
Late arrival, min

International Meeting on Value of Travel Time Reliability,
October 15-16, 2009, Vancouver
Schedule Delay Cost

- \(U = \alpha \times T + \beta \times SDE + \gamma \times SDL + \delta \times L \)

- In presence of random travel times:
 - \(f(T) \) – travel time distribution
 - \(E(U) \) – expected utility dependent on \(f(T) \) and departure time/\(PAT \)
 - Improvement of reliability in terms of \(f(T) \) can be evaluated in terms of \(E(U) \)

- Considerable body of literature:
 - SP estimates: \(\gamma \geq \alpha \)
Temporal Utility Profile for Activity Participation

International Meeting on Value of Travel Time Reliability,
October 15-16, 2009, Vancouver
Temporal Utility Profile for Activity Participation

International Meeting on Value of Travel Time Reliability, October 15-16, 2009, Vancouver
Utility Profile and Schedule Delay

International Meeting on Value of Travel Time Reliability, October 15-16, 2009, Vancouver
Equivalence of Methods

- Perceived time
- Mean-variance
- Schedule delay
- Temporal profile

- Piece-wise VDRF and fixed reliability ratio
- Optimal departure time, Fosgerau, 2007
- Fixed order of activities and constrained delays, Tseng & Verhoeff, 2008
Applicability in Practice

<table>
<thead>
<tr>
<th>Method</th>
<th>Demand model</th>
<th>Network simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived highway time</td>
<td>Easy</td>
<td>Easy</td>
</tr>
<tr>
<td>Time distribution (mean-variance)</td>
<td>Easy</td>
<td>Route choice? Generation of OD reliability measures?</td>
</tr>
<tr>
<td>Schedule delay cost</td>
<td>Preferred arrival time?</td>
<td>Route choice? Generation of OD time distribution?</td>
</tr>
<tr>
<td>Temporal utility profiles for participation in activity</td>
<td>Entire-day schedule consolidation?</td>
<td>Route choice? Generation of OD time distribution?</td>
</tr>
</tbody>
</table>

International Meeting on Value of Travel Time Reliability, October 15-16, 2009, Vancouver
Traffic Physics at Link Level

- Volume-Delay-Reliability Function (VDRF):
 - Average time $t_a = f(v_a)$
 - STD (or other Reliability measure):
 $\sigma_a = g(t_a) = g[f(v_a)]$ or $\sigma_a = h(v_a)$
- Growing number of VDRF estimated:
 - $\sigma_a = g(t_a)$ – linear, slightly non-linear
 - $\sigma_a = h(v_a)$ – highly non-linear (convex)
Mahmassani et al, 2008

Fig. 52. Standard deviation of trip time per mile vs. average trip time per mile for expressway data. Each data point represents the average and standard deviation of the data collected on one link during one 5-minute observation period.

Fig. 53. Standard deviation of trip time per mile vs. average trip time per mile for arterial data. Each data point represents the average and standard deviation of the data collected on one link during one 5-minute observation period.
Mean is Good Predictor of Variance – SHRP 2 L03

ALA-580 EB, I-680 to I-205, 20.25 miles

\[
y = 0.5549 \ln(x) + 0.0893 \\
R^2 = 0.372
\]
Leeds, UK, Model (Arup, 2003)

- **CV** = 0.148 × **CI**^{0.781} × **d**^{-0.285}
 -
 - CV (Coefficient of Variation) = STD/MeanTT
 - CI (Congestion Index) = MeanTT/FreefTT

- Equivalent transformation by substitution:
 - D = d/1.6 (in miles)
 - CI = MeanTT × FreefSp/D (time in min, speed in min/mile)
 - STD/MeanTT = 0.148 × (MeanTT × FreefSp/D)^{0.781} × (D/1.6)^{-0.285}

- Final expression (comparable with our tabulations):
 - Multiply both sides by (MeanTT/D)
 - \(\frac{STD}{D} = 0.148 × \frac{MeanTT}{D}^{1.781} × (FreefSp)^{0.781} × (D/1.6)^{-0.285} \)
Based on Leeds Equation

International Meeting on Value of Travel Time Reliability, October 15-16, 2009, Vancouver
Link vs. Route (OD) Reliability

\[t_{ABC} = 2 \times t \]
\[\sigma_{ABC} = ? \]

A → B → C

\[t_{AB} = t \]
\[\sigma_{AB} = \sigma \]

\[t_{BC} = t \]
\[\sigma_{BC} = \sigma \]
Perfect Correlation

\[t_{ABC} = 2 \times t \]
\[\sigma_{ABC} = 2 \times \sigma \]

\[t_{AB} = t \]
\[\sigma_{AB} = \sigma \]

\[t_{BC} = t \]
\[\sigma_{BC} = \sigma \]
Independent Link Flows

\[t_{ABC} = 2 \times t \]
\[\sigma_{ABC} = \sqrt{2} \times \sigma \]

\[t_{AB} = t \]
\[\sigma_{AB} = \sigma \]

\[t_{BC} = t \]
\[\sigma_{BC} = \sigma \]
Example of Generalization

- For elemental unit (mile):
 - $\sigma = k \times t$
 - $k =$ coefficient of variation

- For entire OD route:
 - $\sigma = k \times t \times (d)^{-\mu}$
 - $d =$ distance
 - (independence) $-0.5 \leq -\mu \leq 0$ (perfect correlation)
Self-Calibration of μ in Link-Based Assignment

- For each OD pair based on the previous iterations:
 - $(d_{OD})^{-\mu(OD)} = \sigma_{OD}/(\Sigma_a \sigma_a) = \eta_{OD}$
- Assume link generalized cost function:
 - $c_a = t_a(v_a) + \rho \times \sigma_a[t_a(v_a)]$
- Scale reliability ratio for next iteration:
 - $\rho_{OD} = \rho \times \eta_{OD}$
Feedback with Scenarios

- Season
- Day of week
- Time of day
- Special events
- Day-to-day individual variation

- Average demand
- Buffer time

- Demand scenarios
- Schedule adjustments

- Network capacity scenarios

- Network simulation scenarios
- Route adjustments

- Scenario-specific travel times

- Travel time distribution

- Average travel times

International Meeting on Value of Travel Time Reliability, October 15-16, 2009, Vancouver
Conclusions

- Significant progress:
 - Reliability quantification and impact on travel demand
 - Physics of traffic flow and travel time distribution at elemental link level

- Roll off the sleeves:
 - Construction of reliability measures at OD-route level
 - Incorporation of reliability in route choice in (efficient) traffic assignment
 - Integration of demand and supply sides incorporating reliability
 - Exploration of analytical and explicit (multiple simulations) methods w.r.t each reliability source