Cost benefit analysis applied to reliability policies in France

TRB – OECD seminar on travel time value and cost-benefit analysis
Vancouver, 15-16 October 2009

Xavier DELACHE
SETRA
(Service d’études sur les transports, les routes et leurs aménagements)

Ministry for sustainable development, France
Views expressed here do not reflect the Ministry’s position
Policy context:
- Transport policies focus on managing existing capacities
- Fluidity is the primary objective, reliability is implicit
- Need for traffic management appraisal is increasing
 - For diverse traffic management measures

Existing assessment practices:
- CBA is commonly used for capacity policies
 - but barely for traffic management
- Ex post evaluation is used for traffic management
 - in a “benefit transfer” approach for experimental measures
Outline (2)

- Existing CBA framework for transport policy:
 - Is applicable for reliability and traffic management
 - in spite of “critical” knowledge gaps

- Knowledge gaps:
 - Time value
 - Towards a scheduling reflecting opportunity costs of activities?
 - Impact of information on behaviours
 - Links between fluidity, safety, reliability
 - Dynamic modelling: multimodal, macro-scale, pollution
1. Policy context (1)

- Transport policies in France: recent trends
 - “Shift” from capacity to flows management
 - National and local budget constraints
 - “Greening” of transport policies
 - End-user’s orientation (quality of service)
 - Impetus on multimodal approaches
 - e.g. dynamic use of road capacities for public transport
 - e.g. park and ride policies in peri-urban areas
 - e.g. multimodal door to door information
 - e.g. multimodal freight policies
 - Impetus in the road sector: draft ITS directive?
 - Relevant level of harmonization for traffic management and traffic information practices?
1. Policy context (2)

- Reliability is not the main policy objective
 - Congestion, environment, safety, public finance

- ... but the importance of reliability should increase
 - Multimodal approaches will increase the value of reliability / unreliability for users (connections)
 - Information to users may increase demand for reliability
 - Perception of indirect impacts of incidents and road fatalities, i.e. non recurrent congestion, is increasing
 - Climate change and critical infrastructure protection concerns will raise reliability issues for extreme impacts / low probability events
1. Policy context (3)

- Road traffic management: appraisal needs
 - Comparaison of traffic management and capacity
 - Selection of local investments by road operators
 - Relevance of national / european service standards
 - Cf. draft ITS directive
 - (e.g. maximum incident detection delay)
 - Relevance of national traffic management policies
 - (e.g. trucks overtake ban)
- Data management
 - Marginal cost of data vs marginal value for traffic management
 - Expected gains of new technologies (floating vehicles)
1. Policy context (4)

- An increasing mix of objectives and instruments
 - Fluidity, safety, reliability
 - are tightly correlated from a global perspective
 - but must be de-correlated for policy analysis
 - Capacity and traffic management are multi-objectives
 - Fluidity, reliability, safety
 - with shared costs (e.g. information costs)
 - need for a comprehensive assessment approach
 - multi-impacts → CBA is generally appropriate
 - diversity of measures → CBA must be “customized”
- Reliability policies = traffic management?
Probability (travel time > t)

- Congestion
- Un-reliability

Fluid travel time
Buffer time
Unreliable travel time

Anticipated travel time

Travel time objectives
Reliability objectives
Fluidity, environment, safety objectives
<table>
<thead>
<tr>
<th>Policies</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Traffic management</td>
</tr>
<tr>
<td></td>
<td>Other policies</td>
</tr>
<tr>
<td>Capacity (local)</td>
<td>Road capacity ; Rail traffic / slots management</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Alternative routes / modes availability</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Door to door oriented slots management</td>
</tr>
<tr>
<td>Prevention</td>
<td>Incident prevention through safety policies</td>
</tr>
<tr>
<td>Preparedness and intervention</td>
<td>Incident detection</td>
</tr>
<tr>
<td></td>
<td>Emergency management plans</td>
</tr>
<tr>
<td>Pre-Information</td>
<td>Transparency on modes / operators / routes reliability</td>
</tr>
<tr>
<td>Real time information</td>
<td>Dynamic routing</td>
</tr>
<tr>
<td></td>
<td>Real time information on schedules</td>
</tr>
<tr>
<td>Pricing</td>
<td>Congestion / peak pricing</td>
</tr>
<tr>
<td></td>
<td>Un-reliability pricing</td>
</tr>
</tbody>
</table>
2. Traffic management: existing assessment practices (1)

- Traffic management policies are still in an experimental phase
 - Measures are tightly linked to local situations
 - Equipments are quickly evolving
 - Relevant authorities are diverse: national road authority and its regional directorates; motorway companies; local authorities

- Assessment practices aim at testing and capitalizing experiences

- Existing assessment practices focus on:
 - “classical” transport indicators:
 - travel time, safety, CO2, local pollutants, noise
 - Acceptability / impacts on behaviours (ergonomy)
2. Existing assessment practices (2)

- Methodology (main features)
 - After – before or with – without comparison :
 - 2 “comparable” periods
 - For dynamic measures : periods, with and without activation
 - For permanent measures : short period or annual
 - On the same section / network

- Indicators :

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time</td>
<td>Average speed or time spent in delays</td>
</tr>
<tr>
<td>Safety</td>
<td>Number of accidents / fatalities</td>
</tr>
<tr>
<td>Enforcement</td>
<td>Number of offenses</td>
</tr>
<tr>
<td>Acceptability</td>
<td>Surveys</td>
</tr>
<tr>
<td>Pollutants, noise</td>
<td>Local measurements</td>
</tr>
</tbody>
</table>
2. Existing assessment practices (3)

- Comparable to other guidelines or practices
 - EU Tempo and Easyway guidelines
 - www.easyway-its.eu
 - US ITS evaluation tool-box (RITA)
 - www.its.gov/evaluation/guide_ressource.htm
 - Cf. french method and case studies
 - www.zelt-fr.org

- Main limits
 - No “business as usual” scenario
 - No assessment of reliability
 - Safety assessment based on a limited data
 - No CBA
2. Existing assessment practices (4)

- CBA application to ex ante evaluation of traffic management
 - Traffic management measures have to be taken into account to optimize the reference situation for capacity projects
 - Cf. provisional instruction for road project appraisal, 2007
 - Cf. reference efficiency of traffic management measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Reference efficiency (impact on transport demand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-information : route advice</td>
<td>3% to 8%, 20% in peri-urban</td>
</tr>
<tr>
<td>Real time information : dynamic routing</td>
<td>1% to 5% (year average)</td>
</tr>
<tr>
<td>Peak-pricing + information</td>
<td>10%</td>
</tr>
<tr>
<td>Dynamic speed limits</td>
<td>3%</td>
</tr>
</tbody>
</table>

- CBA has to be applied for traffic management measures (recommendation : Conseil général des ponts et chaussées, 2004)
3. CBA applied to reliability:
a comprehensive tool-box? (1)

- The “tool-box” (in brief)
 - List of costs and impacts
 - Monetary values
 - Cost of public funds
 - Discount rate, life time, residual value
 - Reference / business as usual scenario
 - Alternative scenarios / optimisation
 - Risk analysis

3. CBA applied to reliability: a comprehensive tool-box? (2)

Questions:

- Does the existent CBA tool box for “capacity” assessment correctly reflect reliability objectives?

- Is the existent CBA tool box for “capacity” assessment relevant for traffic management?

NB: this tool-box was applied to assess vulnerability of critical infrastructures (= costs of “durable” disruptions) (2007)
<table>
<thead>
<tr>
<th>Cost or impact</th>
<th>Relevance for traffic management?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td>✓</td>
</tr>
<tr>
<td>Maintainance</td>
<td>✓</td>
</tr>
<tr>
<td>Operation costs</td>
<td>✓</td>
</tr>
<tr>
<td>Travel time</td>
<td>✓</td>
</tr>
<tr>
<td>Safety</td>
<td>✓</td>
</tr>
<tr>
<td>Vehicles operation costs</td>
<td>✓</td>
</tr>
<tr>
<td>Fuel costs</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>✓</td>
</tr>
<tr>
<td>Landscape</td>
<td>✓</td>
</tr>
<tr>
<td>Local pollutions</td>
<td>✓</td>
</tr>
<tr>
<td>Noise</td>
<td>✓</td>
</tr>
<tr>
<td>Comfort</td>
<td>✓</td>
</tr>
<tr>
<td>Monetary values of impacts</td>
<td>Availability for « capacity » policies (in France)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Travel time</td>
<td>√</td>
</tr>
<tr>
<td>Safety</td>
<td>√</td>
</tr>
<tr>
<td>CO2</td>
<td>√</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>No</td>
</tr>
<tr>
<td>Landscape</td>
<td>No</td>
</tr>
<tr>
<td>Local pollutions</td>
<td>√</td>
</tr>
<tr>
<td>Noise</td>
<td>√</td>
</tr>
<tr>
<td>Comfort</td>
<td>√</td>
</tr>
<tr>
<td>Modelisation of impacts</td>
<td>Availability for « capacity » policies</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Travel time</td>
<td>√</td>
</tr>
<tr>
<td>Safety</td>
<td>√</td>
</tr>
<tr>
<td>CO2</td>
<td>√</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>±</td>
</tr>
<tr>
<td>Landscape</td>
<td>±</td>
</tr>
<tr>
<td>Local pollutions</td>
<td>√</td>
</tr>
<tr>
<td>Noise</td>
<td>√</td>
</tr>
</tbody>
</table>
3. CBA applied to reliability: a comprehensive tool-box? (3)

- Impacts beyond CBA?

- Existing debate in France: does CBA correctly reflect:
 - Equity, social exclusion / inclusion?
 - Effects on geographical distribution of activities and competition?
 - Keynesian effects?

- Is this debate relevant for reliability / traffic management?
3. CBA applied to reliability: a comprehensive tool-box? (4)

- **Equity, social exclusion:**
 - Are low income/fragile households more impacted by unreliability?
 - ~ yes
 - cf. scheduling approach: costs of schedule disruptions or disturbance may be higher

- **Location of activities and competition**
 - Are “just in time” activities more critical for competition?
 - ~ yes
 - competition for other activities is generally at a larger geographical scale (EU) than the project’s scale
3. CBA applied to reliability: a comprehensive tool-box? (5)

- **Keynesian effects**
 - Assuming that keynesian effects have to be taken into account
 - Which is not the recommendation for project assessment
- Are keynesian effects higher for traffic management?
 - ~ yes and no
 - Projects can start quicker than new capacities but slower than surfacing
 - Domestic value added is higher for construction than for ITS technologies
4. Main knowledge gaps (1)

- **Time value**: relevance of the scheduling approach
 - Just in time is increasing (social activities, business)
 - Value of un-reliable time is increasing faster than value of time
 - Reliability is a significant modal choice criteria:
 - Need for differentiated time values among users
 - (e.g. type of freight)
 - Costs of un-reliable time depend on available alternatives for re-scheduling activities
 - Need for differentiated time values
 - among social groups
 - between geographical locations
4. Main knowledge gaps (2)

- Time value: relevance of the scheduling approach
 - Traffic management measures are diverse:
 - Traffic management can address:
 - high delays - low probability events
 - or short delays – high probability events
 → need for different time values for different delays
 - Traffic information can address:
 - real travel time: information favours dynamic routing
 - value of time: information enables scheduling reorganisation
 - buffer time: information enables choices based on existing reliability
 → need to separate buffer time / un-reliable time
 → need to differentiate values of un-reliable time depending on delays
4. Main knowledge gaps (3)

- Reliability assessment and the scheduling approach
 (simplified presentation)

N users : $i = 1, \ldots, N$

P events : $p = 1, \ldots, P$

Total unreliability =

$$\sum_{i,p} (\text{value of unreliable time})_{i,p}$$

* $\left[\text{(real travel time)}_{i,p} - \text{(buffer time)}_i - \text{nominal travel time} \right]$
<table>
<thead>
<tr>
<th>Component</th>
<th>Real time information</th>
<th>Pre-information</th>
<th>Incident management</th>
<th>Dynamic capacity allocation or routing</th>
<th>Fluidity (if anticipated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>value of unreliable time per user</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>value of unreliable time per event</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>real travel time per user</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>real travel time per event</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>buffer time per user</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>References in France</td>
<td>Value of unreliable time / value of time</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIF (2000)</td>
<td>6</td>
<td>Public transport in the Paris region: un-reliable time is defined as « delays »</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delache (2008)</td>
<td>2 to 20</td>
<td>Scheduling model (utility losses of « disrupted » activities due to non expected delays – beyond buffer time) with different assumptions on schedules rigidity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expected travel time | Activity 1 | Activity 2
---|---|---
Real travel time
Value of un-reliable time
/value of reliable time

Nominal travel time
Anticipated travel time = nominal + buffer time
4. Main knowledge gaps (4)

- Impacts of time values for existing CBA
 - Case of automatic incident detection: inter-urban motorway (2*3)

<table>
<thead>
<tr>
<th>Impact</th>
<th>Normal time value</th>
<th>5 * normal time value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time</td>
<td>0,8 %</td>
<td>4,0 %</td>
</tr>
<tr>
<td>Safety</td>
<td>99,1 %</td>
<td>96,0 %</td>
</tr>
<tr>
<td>Environment and energy</td>
<td>0,1 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Total impacts</td>
<td>1</td>
<td>1,03</td>
</tr>
</tbody>
</table>
4. Main knowledge gaps (5)

- Impacts of time values for existing CBA
 - Case of automatic incident detection: peri-urban motorway (2*3)

<table>
<thead>
<tr>
<th>Impact</th>
<th>Normal time value</th>
<th>5 * normal time value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time</td>
<td>12,0 %</td>
<td>40,6 %</td>
</tr>
<tr>
<td>Safety</td>
<td>86,2 %</td>
<td>58,2 %</td>
</tr>
<tr>
<td>Environment and energy</td>
<td>1,8 %</td>
<td>1,2 %</td>
</tr>
<tr>
<td>Total impacts</td>
<td>1</td>
<td>1,5</td>
</tr>
</tbody>
</table>
4. Main knowledge gaps (6)

- Impacts of time values for existing CBA
 - Case of automatic incident detection: urban motorway (2*3) (e.g. Paris area)

<table>
<thead>
<tr>
<th>Impact</th>
<th>Normal time value</th>
<th>5 * normal time value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% benefits</td>
<td>% benefits</td>
</tr>
<tr>
<td>Travel time</td>
<td>25,4 %</td>
<td>63,0 %</td>
</tr>
<tr>
<td>Safety</td>
<td>71,2 %</td>
<td>35,3 %</td>
</tr>
<tr>
<td>Environment and energy</td>
<td>3,4 %</td>
<td>1,7 %</td>
</tr>
<tr>
<td>Total impacts</td>
<td>1</td>
<td>2,0</td>
</tr>
</tbody>
</table>
4. Main knowledge gaps (7)

- Impacts of time values for existing CBA
 - Case of automatic incident detection : urban motorway (2*3) (Paris region)

<table>
<thead>
<tr>
<th>Impact</th>
<th>Normal time value</th>
<th>5 * normal time value + recovery < buffer time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time</td>
<td>25,4 %</td>
<td>79,9 %</td>
</tr>
<tr>
<td>Safety</td>
<td>71,2 %</td>
<td>19,2 %</td>
</tr>
<tr>
<td>Environment and energy</td>
<td>3,4 %</td>
<td>0,9 %</td>
</tr>
<tr>
<td>Total impacts</td>
<td>1</td>
<td>2,7</td>
</tr>
</tbody>
</table>
4. Main knowledge gaps (8)

- Impacts of time values for existing CBA
 - Case of traffic management in the Strasbourg area (Gutenberg)

<table>
<thead>
<tr>
<th>Impact</th>
<th>Normal time value</th>
<th>5 * normal time value</th>
<th>5 * normal time value + recovery < buffer time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>% benefits</td>
<td>% benefits</td>
<td>% benefits</td>
</tr>
<tr>
<td>Travel time</td>
<td>41.5%</td>
<td>31.7%</td>
<td>22.8%</td>
</tr>
<tr>
<td>Safety</td>
<td>57.2%</td>
<td>67.3%</td>
<td>76.5%</td>
</tr>
<tr>
<td>Environment + energy</td>
<td>1.4%</td>
<td>1.1%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Total impacts</td>
<td>1</td>
<td>1.3</td>
<td>1.8</td>
</tr>
</tbody>
</table>
4. Main knowledge gaps (9)

- Challenges for time value studies along the scheduling approach
 - Possible explanatory factors
 - Value of instant activities affected (personnal vs business)
 - Occupation
 - Revenue (are unpredictable agendas « marketable » ?)
 - Time of the day (transition activities may have higher costs)
 - Availability of information (on alternative route, modes)
 - Disruption duration
 - Predictability of disruption duration
 - Reproductibility of events (« experience curve »)
4. Main knowledge gaps (10)

- Stated or revealed preferences studies?
 - Stated preferences may be more appropriate to differentiate reliability values among users
 - CBA and modelling are presently based on a revealed preferences approach
 - Explore revealed preferences studies including reliability factors in route / modal choices?
 - Explore on route vehicles tracking in un-reliable events?
4. Main knowledge gaps (11)

- Other knowledge gaps
 - Impact of information on behaviours
 - Existing ex-post evaluation needs to be capitalized
 - Develop simulators-based studies on representative users ?
 - Develop stated preference surveys ?
 - Develop on route vehicles tracking ?
 - Links between fluidity, safety, reliability
 - Existing ex-post evaluation needs to be capitalized
 - Dynamic modelling :
 - Multimodal and macro-scale models
 - (beyond road traffic micro-simulation)
 - Integration of information dependant behaviours
 - Links between dynamic modelling and pollutant emissions
 - e.g. “stop and go” impacts on emissions
Thank you

xavier.delache@developpement-durable.gouv.fr