Reliability and cost-benefit analysis in Australia and New Zealand

Michael A P Taylor
Institute for Sustainable Systems & Technologies
University of South Australia
Introduction

- Use of travel time reliability
- Reliability performance indicators
- Inclusion in CBA
- Current research

- … in Australia and New Zealand
Use of travel time reliability

• Both AUS & NZ include TTVAR in evaluation
 – performance indicators
 – explicit inclusion in CBA

• The 2 countries have different implementations
 – there are philosophical/political differences …
 – although they share common resources & research
 • e.g. through Austroads
 – common element: *st dev of TT variability distribution*
Reliability performance indicator – Australia

- Reliability metric $R(r,t)$ \((R(r,t) \geq 0) \)

 - based on space speed measurements

\[
R(r,t) = \frac{1.44}{V_{rt}} \sqrt{\frac{\sum_{d} (V_{rtd} - \bar{V}_{rt})^2}{N_{rt} - 1}}
\]

V_{rtd} is average speed of all vehicles on route r at time t on day d

- Reported for main highways in metropolitan areas
Reliability performance indicator – Australia

- Presented in terms of % time in set of ‘reliability bins’
 - $R < 0.2$
 - $0.2 \leq R < 0.3$
 - …
Definition of reliability

- As per the NZ Economic Evaluation Manual
 - Trip time reliability is measured by the unpredictable variations in journey times, which are experienced for a journey undertaken at broadly the same time every day. … This is distinct from the variations in individual journey times, which occur within a particular period.
Reliability performance indicator – New Zealand

- Standard deviation \((s)\) of travel time, computed from

\[
s = s_{\text{min}} + \frac{s_{\text{max}} - s_{\text{min}}}{1 + \exp(b(VCR - a))}
\]

- Reported as \(\text{cv} \, (\%)\), \(VTT = 100 \frac{s}{t}\)

- Parameters \(s_{\text{min}}, s_{\text{max}}, a\) and \(b\) depend on road type and environment (and values are specified)
Reliability performance indicator – New Zealand

- Presented as time series
Use in CBA – Australia

- The *National Guidelines* focus on CBA for urban public transport projects
 - States have well developed methods for road project CBA
Use in CBA – Australia

- The *National Guidelines* focus on CBA for urban public transport projects
 - States have well developed methods for road project CBA
 - … and procedures may differ in the different states
Use in CBA – Australia

- User costs
 - money cost paid, travel time, then ‘unreliability’
 - measure unreliability by
 - st dev of trip time (road traffic)
 - suggested use of NZ method (e.g. to calculate s)
 - no $ values are specified for reductions in s, but research results are cited (⇒ weight 1.3)
 - frequency of running behind schedule (public transport)
 - use ‘unexpected waiting time’
 - with a weight of 3.0
Use in CBA – New Zealand

- Benefits are reductions in road user costs and reductions in external impacts, such as:
 - travel time cost savings (*including improved trip reliability*)
 - VOC savings
 - crash cost savings
 - comfort & productivity benefits
 - driver frustration reduction benefits
 - CO₂ reduction benefits
 - national strategic factors
 - other external benefits
• Travel time benefits for a project option are ‘difference between do minimum and option travel time costs’

Total travel time savings = Base travel time benefits for improved flow

+ travel time benefits for reduced traffic congestion (if applicable)

+ travel time benefits for improved trip reliability (if applicable)
Use in CBA – New Zealand

- Travel time benefits for improved trip reliability
 - include s as additional term in travel time cost savings
- Value 1 min reduction in s at 0.8 (car) and 1.3 (truck) times the value of 1 min reduction in travel time
 - values of travel time tabulated for road types, intersection types, and road environments
 - adjustments made for ‘% of variance occurring outside study area’
Current research

• Raising questions on current applications of TT reliability
• Distribution of travel time variations
 – UniSA longitudinal study
• Correlation of travel times on route sections
 – UCantab study
Longitudinal travel time variability

- Distributions of day-to-day variations in travel times
- Skewed to right
 - not Normal
 - we knew that!
 - nor Log-normal …
 - so what might they be?
Longitudinal travel time variability

JTW travel times Feb 07 - Feb 08

1 y data from one of several routes …
The **Burr distribution** looks promising …

\[
f(x) = kc \frac{x^{c-1}}{(1 + x^c)^{k+1}}
\]

\[
F(x) = 1 - (1 + x^c)^{-k}
\]
Correlated ‘link’ travel times

- If link TT are independent, then total variance is sum of link variances
 - assumption in NZ (and other) method(s)
- If link TT are correlated, then total variance may be much greater:
 \[S_T^2 = \sum_{i=1}^{n} S_i^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} r_{ij}S_iS_j \]

- Has strong implications in terms of overestimating benefits of individual link projects …
UCantab study on correlated link TT

- Data from Central Circular Route, Tokyo Metro
- 39 link sections identified
- Significant correlations found
 - covariance term order of magnitude higher than sum of variances
 - route based projects may yield more benefit than link based ...
 - ... but likely to be more expensive
Correlations between link travel times?

<table>
<thead>
<tr>
<th>Links</th>
<th>1 & 2</th>
<th>2 & 3</th>
<th>3 & 4</th>
<th>4 & 5</th>
<th>5 & 6</th>
<th>6 & 7</th>
<th>12 & 13</th>
<th>13 & 14</th>
<th>14 & 15</th>
<th>15 & 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0.5622</td>
<td>0.1655</td>
<td>0.6806</td>
<td>-0.1531</td>
<td>-0.0035</td>
<td>-0.1942</td>
<td>0.2551</td>
<td>0.3269</td>
<td>0.2660</td>
<td>0.2783</td>
</tr>
<tr>
<td></td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>n.s.</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>
Discussion

- **INSTR2010**
 - 4th International Symposium on Transportation Network Reliability
 - Minneapolis July 2010
 - call for papers now open
 - details at www.instr.org