More Sustainable Transportation:
The Role of Energy Efficient Vehicle Technologies

John B. Heywood
Sun Jae Professor of Mechanical Engineering
Director, Sloan Automotive Laboratory
Massachusetts Institute of Technology

OECD International Transport Forum,
Leipzig, Germany, 28-30 May, 2008
Summary Conclusions, with Explanations

1. Petroleum use and greenhouse gas emissions are increasing globally by about 2% per year due to steady growth in land and air, passenger and freight transportation demand.
Transport-related Well-To-Wheels
\(\text{CO}_2 \) emissions by mode, 2000 - 2050

Gigatonnes \(\text{CO}_2 \)-Equivalent GHG Emissions/Year

Source:
Sustainable Mobility Project calculations.
2. A 30-50% reduction in light-duty vehicle fuel consumption is feasible over the next 20-40 years, at increased cost. Such a reduction in fuel consumption can be achieved at constant performance by a combination of:

- Improved gasoline and diesel engines, and transmissions, in the nearer-term (20 years)
- Vehicle weight, size, tire resistance and drag reductions
- IC engine/electric hybrids in the mid-term
- Plug-in electric hybrids and hydrogen fuel cells in the longer-term (40 years)
Evolution of a dominant vehicle powertrain system is uncertain in a carbon constrained world.

Chemical/Mechanical

ICE Based

Advanced ICE Based

Convergence of SI and CI?

Time

ICE: Internal Combustion Engine;
SI: Spark Ignition; CI: Compression Ignition

Battery based

Hybrid Electric based

Plug-in Hybrid Electric based

Fuel Cell based

Fuel Cell Hybrid based

Advanced Fuel Cell based

5/28-30/2008
Well-to-Wheels Comparison of Future Powertrains

Petroleum Consumption (l/100 km gasoline equivalent)

- Spark Ignition Gasoline
- E-10 (Cellulosic) Gasoline
- Gasoline from Oil sands
- Diesel
- Gasoline Turbo
- Gasoline Hybrid
- Current ICE Gasoline: 8.8 l/100 km, 250 g/km
- Plug-In Hybrid, 30 mile range
- Fuel Cell (Distributed Natural Gas)
- Electric Vehicle
- Well-to-Wheel GHG Emissions (g CO₂/km)

0 20 40 60 80 100 120 140 160 180 200
0 1 2 3 4 5 6 7
NG: Natural Gas
Coal
Avg Grid
Fuel Cell (Distributed Natural Gas)
Plug-In Hybrid, 30 mile range
Current ICE Gasoline: 8.8 l/100 km, 250 g/km
Gasoline Hybrid
3. Policies to reduce vehicle fuel consumption must recognize and then deal with the trade-off between vehicle performance, size (and weight) and fuel consumption.

In the U.S., over the past 20-25 years, performance increases have dominated and average fuel consumption has not improved.

In Europe, over the past 10 years, fuel consumption improvements have occurred in parallel with performance and weight increases.
• A critical question is the extent to which the benefits of more efficient technologies go to reduce actual fuel consumption.

• Quantify this with a *degree of emphasis on reducing fuel consumption* (ERFC).

\[
\text{ERFC} = \frac{\text{Fuel consumption (FC) reduction realized}}{\text{FC reduction attainable with constant performance and size}}
\]
Trade-Off between Acceleration Performance and Fuel Consumption in the Average New U.S. Gasoline Car in 2035

- **100% ERFC**:
 - Fuel consumption: 1.616 kg
 - 0-100 km/h acc. time: 1.293 s

- **50% ERFC**:
 - Fuel consumption: 1.454 kg
 - 0-100 km/h acc. time: 7.0 s

- **0% ERFC**:
 - Fuel consumption: 1.616 kg
 - 0-100 km/h acc. time: 6.0 s

- **Current car**
- **Future car**
4. Due to slow rates of vehicle turnover in the in-use fleet, fuel consumption of mainstream technology vehicles will determine nearer-term fuel use and GHG emissions profiles. Directing the efficiency improvements towards reducing fuel consumption of high-sales-volume vehicle technologies is critical.

Fleet studies are an essential tool in analyzing the impacts of various scenarios or strategies on fleet fuel consumption and GHG emissions.
Illustrative Example for U.S.: Many Technology Scenario

% of new car sales

Year

Conventional Gasoline

37.5%

Turbo Gasoline

25%

Plug-In Hybrids

7.5%

Gasoline Hybrids

15%

Diesels

15%
U.S. LDV Fuel Use: Many Technologies Scenario

Light-Duty Vehicle Fuel Use (in Billion Liters of gasoline equivalent per year)

- No Change
- Reference (50% ERFC)

Market Mix

2035 Advanced Technology Market Share (50% ERFC):
- Turbo Gasoline Engines: 25%
- Diesels: 15%
- Gasoline Hybrids: 15%
- Plug-In Hybrids: 7.5%

Note: Assumes 0.5% - 0.1% VKT/veh per year growth and 0.8% per year sales growth.
5. Due to high initial cost and strong competition from mainstream gasoline vehicles, U.S. market penetration rates of low-emissions diesels, and gasoline hybrids are likely to be slower than is widely believed. Thus, in the U.S., diesels and gasoline hybrids have only a modest, though growing potential for reducing fleet fuel use before 2025.

6. In the longer-term, the impact of steadily increasing sales of advanced technology vehicles will be far larger than their near term impact. Since the time-scales to impact of new automotive technologies are long, advanced vehicle technology introduction needs to start as soon as possible.
7. A greater number of vehicle and fuel alternatives are available to displace petroleum use than to reduce greenhouse gas emissions. Policy efforts should focus on measures that improve both energy security and carbon emissions at the same time.

- Plug-In Hybrids could have a major impact on reducing petroleum use, but (for U.S. electricity generation mix) GHG reductions similar to plug-ins can be achieved by gasoline hybrids at lower cost.

- Increasing the biomass-to-liquid fuel supply might help reduce well-to-tank GHG emissions, but increased use of non-conventional oil is likely to negate much of this impact.
Low Oil Sands and High Ethanol Scenario

Change in Well-to-Wheel GHG Emissions (%)

Fuel Mix in 2035 (percentages on energy basis)
- Non-Conventional Oil: 10%
- Corn Ethanol: 7%
- Cellulosic Ethanol: 7%

Increase in GHG Emissions from Non-Conventional Oil

Decrease in GHG Emissions from Corn Ethanol

Decrease in GHG Emissions from Cellulosic Ethanol

Net Change in GHG
Energy and Greenhouse Gas (GHG) reductions from transportation is a daunting task.

1. Placing much greater emphasis on reducing fuel consumption rather than improving vehicle performance would lower the required market penetration rates of advanced vehicle technologies to achieve significant reductions in fuel use and greenhouse gas emissions.

2. Directing the efficiency improvements towards reducing the actual fuel consumption of high-sales-volume vehicles is critical to achieve nearer-term impact.

3. Reducing average vehicle weight and size will also be important.

4. Sustained policy efforts that go well beyond current incentives during the initial market introduction of advanced propulsion systems and fuels will be needed to achieve significant reductions in light-duty vehicle fleet fuel use.

5. Policy initiatives should be focused on measures that rapidly improve both energy security and carbon emissions at the same time.