Urbanisation and Low Carbon Sustainable Transport

Aimée Aguilar Jaber
COP 19, Warsaw, November 2013
ITF Urban Transport Model

Global passenger transport trends and impacts increasingly defined by changes in these variables in urban areas:

- Economic activity
- Land Use
- Fuel prices
- Road infrastructure
- Public transport service (Quality and quantity)
ITF Urban Transport Model

What we did:

- Simulated urban evolution based on average agglomeration classes (UN definition)
- Created an “urban front-end” to the IEA Mobility Model (MoMo).
- Modeled mobility, modal shares, CO2 emissions
ITF Urban Transport Model

What we cover:

- Motorised passenger inland transport
- Latin America (currently)
ITF Urban Transport Model

What data we used:

- Development Bank of Latin America (CAF) Urban Mobility Observatory
- McKinsey Global Institute (MGI) Cityscope
- United Nations Population and Urbanization Prospects data
ITF Urban Transport Model

How it works:

Urban Travel
- Population
- Urban GDP
- Population density
- Public transport service quality

Non-Urban Travel
- Population
- National GDP

Transport Activity

Fuel Price
ITF Urban Transport Model

How it works with IEA MoMo:

Urban Transport Model

- Urban Travel
 - Fuel Price
- Non-Urban Travel
 - Transport Activity

IEA MoMo

- IEA Baseline non-urban rail and bus
- Energy Use
 - Per km, based on stock and technology
- CO₂ emissions
Four Scenarios

Type of transport modes fostered by urbanisation

Road expansion

High

Private

Private transport-oriented mobility with high road infrastructure

Public transport-oriented mobility with high road infrastructure

Low

Private

Private transport-oriented mobility with low road infrastructure

Public transport-oriented mobility with low road infrastructure
Four Scenarios

Type of transport modes fostered by urbanisation

Private
- High urban sprawl
- Low transport service expansion
- Moderate improvement of public transport quality

Public
- Low urban sprawl
- High fuel prices
- High transport service
- Significant improvement of public transport quality
Mobility and CO$_2$: 2050

Long-term transport planning and policies translate into significant changes. Three scenarios (% of total p-kms)

Baseline 2050
- Car: 69%
- Motorcycle: 10%
- Bus: 21%

Private-transport oriented, high road growth
- Car: 83%
- Motorcycle: 7%
- Bus: 10%
- +19% p-kms
- +34% CO$_2$

Public transport oriented, lower road growth
- Car: 48%
- Motorcycle: 7%
- Bus: 45%
- -2% p-kms
- -27% CO$_2$
Sustainability: Convergence in Mobility, Divergence in CO$_2$

Growth in P-kms Index (2010=100)

Growth in CO$_2$ emissions Index (2010=100)
Impact on total passenger inland transport outcomes for Latin America, 2050

Growth 2010-2050
Index (2010=100)

CO₂ emissions between +30% and -23% relative to the Baseline
Conclusions

- Public transport-oriented urbanisation could help slow growth in vehicle-kilometres travelled without sacrificing overall passenger mobility and reducing CO$_2$ emissions.

- Long-term strategic planning is needed, rather than isolated actions.
Final Remarks and Future plans

- Detail on assumptions and scenarios: ITF Transport Outlook 2013 (to be released in December).
- Tool for exploring multidimensional settings of urbanisation and magnitude/time-frame of their effect on future aggregate transport trends, related CO₂ emission evolution.
- Modal shift is linked to changes in urban configuration and policy paths.
- More specific policy analysis through these type of models could be possible but requires very careful examination of evidence and study on how to introduce it into the framework.
- Short and medium term plans for ITF: Expand methodology to China and India (and then other Asia).
Thank you

Aimée Aguilar Jaber
T +33 (0)1 45 24 94 98
E aimee.aguilarjaber@oecd.org

Postal address
2 rue Andre Pascal
75775 Paris Cedex 16