Atomistic Congestion Tolls at Concentrated Airports?

Seeking a Unified View

In the Internalization Debate

Kurt Van Dender

Department of Economics, U.C. Irvine

and

Joint Transport Research Centre of the OECD and the ITF

November 2007
joint with Jan Brueckner – cf. working paper

- Are **marginal congestion costs** at commercial **airports** (mostly) **internal** or **external**?
 - Academic debate,
 - Obvious impact on policy recommendations,
 - Depends on market structure and substitutability.

- the debate, the model, the results
The debate

Daniel, 1995: “no internalization” hypothesis provides better empirical fit for MSP; competitive fringe explanation

Daniel & Harback, 2007: further empirical support (more airports)

Brueckner, 2002: theoretical model, empirical illustration: partial internalization

Mayer & Sinai, 2003: empirical evidence for partial internalization

…simple, unified framework showing the sources of theoretical disagreement
The model

- 1 airport, 2 airlines (1 and 2), 1 period (congested).

- A. perfectly elastic demand (eliminate market power),
 perfect substitutes;

- B. imperfectly elastic demand,
 perfect substitutes;

- C. imperfectly elastic demand,
 differentiated products
Airline profit function:

\[
\pi_i = [p - t(f_1 + f_2)] s f_i - [\tau s + g(f_1 + f_2)] f_i, \ i = 1, 2
\]

or

\[
\pi_i = (p - \tau) s f_i - c (f_1 + f_2) f_i, \ i = 1, 2
\]

where

\[
c(f_1 + f_2) \equiv s t (f_1 + f_2) + g(f_1 + f_2)
\]

\[c > 0 \text{ and } c \geq 0 \text{ when } c \text{ is positive}\]
The results

A. Perfectly elastic demand, perfect substitutes: 4 cases

A.1. Social optimum: \[p - \tau - \left[(f_1 + f_2)c + c\right]/s = 0 \]

A.2. Cournot duopoly: \[p - \tau - [f_1c + c]/s = 0 \]

\[T = f^*c'(2f^*) = 0.5 \text{MCD}^* \]

(partial internalization)
A.3. Stackelberg leader (1),

\[p - \tau - \frac{1}{s}[f_1 c'(1 + \frac{\partial f_2}{\partial f_1}) + c] = 0 \]

\[T_1 = 0.5(1 + \lambda^*)MCD^* \]

Toll between Cournot and Pigouvian value.

Cournot follower (2):

\[p - \tau - \frac{f_2 c' + c}{s} = 0 \]

A.4. Stackelberg leader (1),

\[p - \tau - \frac{c}{s} = 0 \]

Competitive fringe (2):

\[p - \tau - \frac{c}{s} = 0 \]

Pigouvian tolls required.
B. Imperfectly elastic demand, perfect substitutes;

demand function \(d[s(f_1 + f_2)] \), \(d' < 0 \)

B.4. Stackelberg leader (1),

\[d - \tau - c/s = 0 \]

Competitive fringe (2):

\[d - \tau - c/s = 0 \]

No mark-up.
Pigouvian tolls required.
C. Imperfectly elastic demand, imperfect substitutes (independent demand)

Demand functions $p_1 = d_1[sf_1]$, $p_2 = d_2[sf_2]$, $d_1' < 0$, $d_2' < 0$

C.4. Leader (1),

$$d_1 + sf_1d_1' - \tau - \frac{1}{s} \left[f_1c' \left(1 + \frac{\partial f_2}{\partial f_1} \right) + c \right] = 0.$$

Toll between Cournot and Pigouvian value.

Fringe (2):

$$d_2 - \tau - c/s = 0$$

Pigouvian toll.

This generalizes to the case of imperfect substitutes.
Which model describes reality best?

- Market structure may differ across airports.
- Air travel is a commodity, but consumer loyalty programs limit substitution.
- The welfare loss from inappropriately charging atomistic tolls may be small (Morrison and Winston, 2006).
- US is not EU: different runway allocation mechanisms