Outline

- Eco-Driving: Background
- Eco-Driving: Impacts
- Eco-Driving: Role for Governments?
- Corporate Mobility Management: ITF Research Conclusions

Eco-Driving: Driving style recommendations

► Shift up as soon as possible: 2000 – 2500 revolutions/minute
► Maintain a steady speed, using the highest gear possible
► Look ahead as far as possible and anticipate to surrounding traffic.
► Decelerate smoothly by releasing the accelerator in time, leaving the car in gear
► Monthly check of tyre pressure
► Use in-car devices: revolution counter, onboard computer, cruise control, shift indicator, tyre pressure monitor, etc.
► Reduce or eliminate idling
► Windows closed at high speed, roof rack off if unused, keep unnecessary weight out of boot.
Outline

- Eco-Driving: Background
- Eco-Driving: Impacts
- Eco-Driving: Role for Governments?
- Corporate Mobility Management: ITF Research Conclusions
EU Car & Van GHG Abatement Costs & Mitigation Potential

Annual reduction in 2012 ~ 38 Mt

Annual reduction in 2020 ~ 96 Mt

Source: TNO, IEEP, LATS

Eco-driving: Impact on Fuel economy

1300 cc class

Without smart driving 68.9 (14.5 km/l)

With smart driving average 50.5 (19.8 km/l)

27% reduction!

Start 10%

Cruising 7%

Stopping 9%

Deceleration 1%

Fuel consumption [cc/km]

2300 cc class

Without smart driving 128.8 (7.8 km/l)

With smart driving average 96.5 (10.4 km/l)

25% reduction!

Start 10%

Cruising 1%

Stopping 11%

Deceleration 3%

Fuel consumption [cc/km]

* Based on results of the Smart Driving Contest in FY2004

Source: TNO, IEEP, LATS

Eco-driving - gear shift indicator (78€)

Fuel efficient AC (24€ - 37€)

Low rolling resistance tyres (73€)

Tyre pressure monitoring (-50€)

Low Viscosity lubricants (113€)

Brazilian Ethanol (28€ - 34€)

Eco-driving - new drivers (60€)

Biodiesel (59€ - 268€)

Vehicle technology to 130g by 2012 (135€)

European Ethanol (65€ - 451€)

Eco-driving – existing drivers (-45€)

Vehicle technology to 130g by 2012 (135€)

With smart driving average 50.5 (19.8 km/l)

27% reduction!

Start 10%

Cruising 7%

Stopping 9%

Deceleration 1%

Fuel consumption [cc/km]

2300 cc class

Without smart driving 128.8 (7.8 km/l)

With smart driving average 96.5 (10.4 km/l)

25% reduction!

Start 10%

Cruising 1%

Stopping 11%

Deceleration 3%

Fuel consumption [cc/km]

* Based on results of the Smart Driving Contest in FY2004
How big are CO2 savings

- 5-15% cars, buses, trucks
- Best drivers 30-50%
- Long term without feedback 5%
- Higher with feedback instrumentation

Examples of In-Vehicle Eco-driving” Feedback Devices
How big are CO2 savings

- 5-15% cars, buses, trucks
- Best drivers 30-50%
- Long term without feedback 5%
- Higher with feedback instrumentation
- 5% with feedback instruments alone
- Target in Austria/NL 10% of all transport sector emissions
- Trains DB intercity achieved 5%
- Waterways potential 15%

Outline

- Eco-Driving: Background
- Eco-Driving: Impacts
- Eco-Driving: Role for Governments?
- Corporate Mobility Management: ITF Research Conclusions
Do we need government intervention?
- Many fleet operators do it themselves
- Many more join with support, as up front costs more visible than savings
- Private drivers need help, government or clubs
- Platforms of stakeholders work best

Government Measures
- Information – build ecodriving brand
Government Measures

- Information – build ecodriving brand
- Training
 - Partnerships
 - Part of learner driver training
 - Driving instructor training
 - Part of test criteria for commercial and general driver licenses
- Fiscal incentives for in car instruments and for 8th gear?
► Cost Euros 7/tCO₂
► Central not secondary part of CO₂ strategy
► Key to stimulating other measures – logistics management, car purchase choice, even household energy saving
► Monitor to justify, but
 ■ Don’t overspend on monitoring
 ■ Don’t make levels of proof higher than for emissions regulations or biofuels

EU legislation

► EC Cars and CO₂ policy: don’t treat ecodriving as a poor alternative but as a central complement to regulations
► Parliament’s Resolution sets an unnecessarily tough standard of proof
► Driver licensing could go further and make ecodriving a test criteria
Outline

- Eco-Driving: Background
- Eco-Driving: Impacts
- Eco-Driving: Role for Governments?
- Corporate Mobility Management: ITF Research Conclusions

Corporate Mobility Management

- Why Target Companies/Employers?
- Key Tool: The Mobility Plan
 - Analysis of current situation
 - Targets
 - Measures
 - Responsibilities
 - Workplan
 - Ex-post assessment
- Plans can be voluntary or mandatory, can also be used as “bargaining chips”
Corporate Mobility Management: Impacts

► Not often quantified
► Magnitude of impact can be significant (-15%-20% drive alone)
► Impact often linked to other changes (e.g. relocation)
► Avoided parking costs a significant driver.

Corporate Mobility Management: Motivations

► Don’t expect altruism
► Pressure from regulations (e.g. PDE)
► Cost pressure:
 ▪ Congestion
 ▪ Employee/customer parking
► No internal accounting mechanisms that can pick up on CMM benefits
► No support from upper management
► Mobility Management Support facilities can help.
Corporate Mobility Management: Role for Government?

- *Quid-pro-quo* bartering (esp. regarding minimum parking regs. and zoning constraints. (e.g. Zurich).
- CMM plans for large traffic generators in the context of urban mobility plans (France)
- Fiscal treatment of free parking and work travel.
- Important: Groups of companies and Chambers of Commerce may be the correct echelon for action in some instances (Portland, Grenoble).

Thank You

www.internationaltransportforum.org

www.cemt.org