On the marginal accident cost of road use

By
Lasse Fridstrøm
Institute of Transport Economics (TØI)
Oslo, Norway
lef@toi.no

OECD/ITF Round Table on Insurance and Road Accident Risk,
22-23 September 2011, Paris
Outline

1. Problem statement
   - How does the number accidents depend on the amount of traffic, as measured, e.g., in terms of vehicle kms travelled (VKT)?
   - How is the risk affected by one additional vehicle entering the road?
   - What is the marginal accident cost pertaining to, e.g., light vehicles, heavy vehicles, and motorcycles?
   - How large is the externality involved?
   - How is the externality related to insurance?

2. Mathematical formalism

3. Empirical evidence

4. Summary

5. Discussion
Accident costs are not internalised through insurance

- They are, in fact, *externalised*.
- Although the *club* of road users may be seen to cover their accident costs through insurance premiums roughly balancing the damages paid, this is irrelevant.
- The *individual* road user is protected against large financial losses. Externalities operate at the disaggregate level.
- Without auto insurance, private car use would be an option only to the *reckless*, the *risk lovers* and the immensely *rich*.
- Only operators large enough to be self-insured could enter the market.
The basic decision: to drive

Road users also make a number of other choices:

- Vehicle type (age, mass, power, built-in safety devices, etc)
- Destination
- Route
- Time of day/week/year
- Speed
- Attention/distraction
Formalism: the marginal external accident cost of road use

\[ \frac{\partial K(v)}{\partial v_A} = \alpha(v) \cdot r(v) \cdot [\varepsilon_A^r + \varepsilon_A^\alpha + 1] \]

Aggregate accident cost
Vector of VKT by vehicle class
Mean private accident cost per VKT
Unit accident cost
Elasticty of accidents wrt overall road use

Aggregate vehicle kms travelled (VKT)
Mean accident cost
Risk (accidents per VKT)
Elasticty of risk wrt overall road use

Elasticty of mean accident cost wrt overall road use
Mean private (internal) share of accident cost
In the multidimensional case:

\[
\frac{\partial K(v)}{\partial v_j} = \alpha(v) \cdot r(v) \cdot \left[ \varepsilon_j^\omega + \varepsilon_j^\alpha \right] \frac{v_A}{v_j} - q_j \frac{k_j(v)}{k(v)},
\]

Mean private accident cost within class \( j \)

Elasticity of accidents w.r.t. to VKT within class \( j \)

Unit accident cost within class \( j \)

Elasticity of VKT by class \( j \)

Inverse traffic share

Mean private share of accident cost within class \( j \)

We need to evaluate the yellow part.
Table 1: Measures of partial association between injury accidents and overall, light vehicle and heavy vehicle road use, as estimated for Norwegian counties 1973-94. Minimal, mean and maximal sample point values. Source: Fridstrøm (1999, 2000a)

<table>
<thead>
<tr>
<th>Traffic category</th>
<th>Elasticity</th>
<th>Inverse traffic share times elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Mean</td>
</tr>
<tr>
<td>Total vehicle kilometres</td>
<td>0.484</td>
<td>0.494</td>
</tr>
<tr>
<td>Light vehicle kilometres</td>
<td>0.248</td>
<td>0.291</td>
</tr>
<tr>
<td>Heavy vehicle kilometres</td>
<td>0.181</td>
<td>0.202</td>
</tr>
</tbody>
</table>

\[
\varepsilon_A^r = \varepsilon_A^\omega - 1 \\
\varepsilon_j^r = \varepsilon_j^\omega - \frac{V_j}{V_A}
\]
Risk decreases with traffic density

![Graph showing the relationship between injury accident risk and traffic density](Image)
Crucial thresholds

\[ q_A - \varepsilon_A^\alpha < \varepsilon_A^\omega = 0.494 \]

If the overall, internal accident cost share minus the mean cost elasticity is smaller than appr. one half, then the marginal external accident cost is positive.

Similarly for light and heavy vehicles, respectively:

\[ q_L < \varepsilon_L^\omega = 0.345 \]

\[ q_H < \varepsilon_H^\omega = 1.321 \]
Injury accident elasticity estimates for Norway 1994
Summary

- The accident risk is not independent of the traffic volume. It is a decreasing function of it.
- Hence, the risk elasticity with respect to road use is probably negative.
- There is probably a large, positive accident externality generated by heavy vehicle road use, while the marginal external accident cost of private car use is quite small, perhaps even negative.
- To the extent that it is positive, it is so, not in spite of auto insurance, but – at least partly – on account of it.
- Motorcycle use appears to be just as dangerous on the margin as heavy vehicle use, involving, however, most probably a significantly smaller external accident cost share.
- The challenge of ratemaking is to reduce the adverse incentives inherent in auto insurance.
Qualifications

- Econometric work is hardly representative of today’s European congestion levels.
- Constrained model has been used in order to elicit strong results; may be subject to specification error.
- Little is known on how the mean accident cost depends on traffic density/congestion. The elasticity is likely to be negative.
- Little is also known on the perceived, internal share of accident costs. We have generally assumed that it does not depend on traffic density.
Merci pour votre attention!

Thanks for listening!
Direct daylight effects, conditional on motor vehicle road use. Injury accidents and victims by road user category. Norway 1994
Partial results from injury accident regression models. Parameter estimates, with t-statistics in parentheses.

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Parameter</th>
<th>Injury accidents in total</th>
<th>Pedestrian injuries</th>
<th>Single vehicle injury accidents</th>
<th>Multiple vehicle injury accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall traffic volume (vehicle kilometres)</td>
<td>$\beta_1$</td>
<td>0.911 (28.26)</td>
<td>1.109 (14.07)</td>
<td>0.804 (15.95)</td>
<td>1.032 (24.71)</td>
</tr>
<tr>
<td>Heavy vehicle share of traffic volume</td>
<td>$\beta_2$</td>
<td>0.149 (2.65)</td>
<td>0.105 (0.80)</td>
<td>-0.209 (-2.18)</td>
<td>0.347 (4.61)</td>
</tr>
<tr>
<td>Traffic density (vehicle km per road km)</td>
<td>$\beta_3$, $\lambda_3$</td>
<td>-0.435 (-11.02)</td>
<td>-0.927 (-10.66)</td>
<td>-0.081 (-5.30)</td>
<td>-0.569 (-6.88)</td>
</tr>
<tr>
<td>MC exposure proxy</td>
<td>$\beta_4$</td>
<td>0.027 (4.80)</td>
<td>0.036 (3.29)</td>
<td>0.032 (3.14)</td>
<td>0.028 (3.47)</td>
</tr>
<tr>
<td>Public bus service density</td>
<td>$\beta_5$</td>
<td>0.243 (8.02)</td>
<td>0.764 (10.86)</td>
<td>0.307 (6.50)</td>
<td>0.108 (2.66)</td>
</tr>
<tr>
<td>Light rail service density</td>
<td>$\beta_6$</td>
<td>0.019 (3.05)</td>
<td>0.065 (5.47)</td>
<td>-0.018 (-1.89)</td>
<td>0.025 (3.39)</td>
</tr>
</tbody>
</table>
Accident elasticities with respect to traffic volume, evaluated at sample points and plotted against traffic density.
Unresolved puzzles

- Are we at the stage where the accident externality cost generated by the marginal road user is zero or perhaps even negative, on account of the marginal road user’s contribution to congestion and hence to speed limitation?

- Or are we, perhaps, in some heavily congested regions even at a stage where the total marginal accident cost (external and internal) of road use is approaching zero?

- Is this (one of) the reason(s) why accident counts in Western Europe generally have kept falling since the early 1970s, in spite of increasing road use?

- Is there, perhaps, some kind of trade-off between congestion and accident externalities, the sum of the two being less variable than either, since congestion tends to reduce accidents and/or their severity?